The ability to control crystal nucleation through the simple addition of a nucleating agent (nucleant) is desirable for a huge range of applications. However, effective nucleating agents are known for only a small number of systems, and many questions remain about the mechanisms by which they operate. Here, we explore the features that make an effective nucleant and demonstrate that the biological material hair-which naturally possesses a chemically and topographically complex surface structure-has excellent potential as an effective nucleating agent.
View Article and Find Full Text PDFRecent advances in X-ray instrumentation and sample injection systems have enabled serial crystallography of protein nanocrystals and the rapid structural analysis of dynamic processes. However, this progress has been restricted to large-scale X-ray free-electron laser (XFEL) and synchrotron facilities, which are often oversubscribed and have long waiting times. Here, we explore the potential of state-of-the-art laboratory X-ray systems to perform comparable analyses when coupled to micro- and millifluidic sample environments.
View Article and Find Full Text PDFX-ray scattering techniques provide a powerful means of characterizing the formation of nanoparticles in solution. Coupling these techniques to segmented-flow microfluidic devices that offer well-defined environments gives access to time-resolved analysis, excellent reproducibility, and eliminates potential radiation damage. However, analysis of the resulting datasets can be extremely time-consuming, where these comprise frames corresponding to the droplets alone, the continuous phase alone, and to both at their interface.
View Article and Find Full Text PDFThe clean and reproducible conditions provided by microfluidic devices are ideal sample environments for in situ analyses of chemical and biochemical reactions and assembly processes. However, the small size of microchannels makes investigating the crystallization of poorly soluble materials on-chip challenging due to crystal nucleation and growth that result in channel fouling and blockage. Here, we demonstrate a reusable insert-based microfluidic platform for serial X-ray diffraction analysis and examine scale formation in response to continuous and segmented flow configurations across a range of temperatures.
View Article and Find Full Text PDFNanodomains are intracellular foci which transduce signals between major cellular compartments. One of the most ubiquitous signal transducers, the ryanodine receptor (RyR) calcium channel, is tightly clustered within these nanodomains. Super-resolution microscopy has previously been used to visualize RyR clusters near the cell surface.
View Article and Find Full Text PDF