Modern approaches in metallodrug research focus on compounds that bind protein targets rather than DNA. However, the identification of protein targets and binding sites is challenging. Using intact mass spectrometry and proteomics, we investigated the binding of the antimetastatic agent RAPTA-C to the model proteins ubiquitin, cytochrome c, lysozyme, and myoglobin.
View Article and Find Full Text PDFMass spectrometry (MS) is an analytical technique for molecule identification that can be used for investigating protein-metal complex interactions. Once the MS data is collected, the mass spectra are usually interpreted manually to identify the adducts formed as a result of the interactions between proteins and metal-based species. However, with increasing resolution, dataset size, and species complexity, the time required to identify adducts and the error-prone nature of manual assignment have become limiting factors in MS analysis.
View Article and Find Full Text PDFMetal complexes bind to a wide variety of biomolecules and the control of the reactivity is essential when designing anticancer metallodrugs with a specific mode of action in mind. In this study, we used the highly cytotoxic compound [RuII(cym)(8-HQ)Cl] (cym = η6-p-cymene, 8-HQ = 8-hydroxyquinoline), the more inert derivative [RuII(cym)(8-HQ)(PTA)](SO3CF3) (PTA = 1,3,5-triaza-7-phosphaadamantane), and [RuII(cym)(PCA)Cl]Cl (PCA = pyridinecarbothioamide) as a complex with a different coordination environment about the Ru center and investigated their stability, interactions with proteins, and behavior in medium (αMEM) and human serum by capillary zone electrophoresis. The developed method was found to be robust and provides a quick and low-cost technique to monitor the interactions of such complexes with biomolecules.
View Article and Find Full Text PDF