There is a pressing need to increase the efficiency and reliability of toxicological safety assessment for protecting human health and the environment. Although conventional toxicology tests rely on measuring apical changes in vertebrate models, there is increasing interest in the use of molecular information from animal and in vitro studies to inform safety assessment. One promising and pragmatic application of molecular information involves the derivation of transcriptomic points of departure (tPODs).
View Article and Find Full Text PDFis a colonial marine hydroid that shows remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two species, and , placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male and identified cell-type markers for all major cell types, including key i-cell markers.
View Article and Find Full Text PDFis a colonial marine hydroid that exhibits remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two species, and , placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male and identified cell type markers for all major cell types, including key i-cell markers.
View Article and Find Full Text PDFCnidarians are the oldest lineage of venomous animals and use nematocysts to discharge toxins. Whether venom toxins have been recruited to support parasitic lifestyles in the Endocnidozoa (Myxozoa + ) is, however, unknown. To examine this issue we variously employed transcriptomic, proteomic, associated molecular phylogenies, and localisation studies on representative primitive and derived myxozoans (Malacosporea and Myxosporea, respectively), , and the free-living staurozoan .
View Article and Find Full Text PDFAsparaginases (ASNases) are a large and structurally diverse group of enzymes ubiquitous amongst archaea, bacteria and eukaryotes, that catalyze hydrolysis of asparagine to aspartate and ammonia. Bacterial ASNases are important biopharmaceuticals for the treatment of acute lymphoblastic leukemia, although some patients experience adverse allergic side effects during treatment with these protein therapeutics. ASNases are currently divided into three families: plant-type ASNases, Rhizobium etli-type ASNases and bacterial-type ASNases.
View Article and Find Full Text PDFis an azooxanthellate coral species recorded in the Indian and Atlantic oceans and is presently widespread in the southwestern Atlantic with an alien status for Brazil. outcompete other native coral species by using a varied repertoire of biological traits. For example, has evolved potent venom capable of immobilizing and digesting zooplankton prey.
View Article and Find Full Text PDFIn this quantitative proteomics study we determined the variety and relative abundance of toxins present in enriched preparations of two nematocyst types isolated from the primary tentacles of the adult medusa stage of the hydrozoan . The two nematocyst types were microbasic mastigophores and microbasic euryteles, and these were recovered from the macerated tentacle tissues by using a differential centrifugation approach. Soluble protein extracts from these nematocysts were tagged with tandem mass tag isobaric labels and putative toxins identified using tandem mass spectrometry coupled with a stringent bioinformatics annotation pipeline.
View Article and Find Full Text PDFVenomous animals can deploy toxins for both predation and defense. These dual functions of toxins might be expected to promote the evolution of new venoms and alteration of their composition. Cnidarians are the most ancient venomous animals but our present understanding of their venom diversity is compromised by poor taxon sampling.
View Article and Find Full Text PDFEnvironmental stress from ultraviolet radiation, elevated temperatures or metal toxicity can lead to reactive oxygen species in cells, leading to oxidative DNA damage, premature aging, neurodegenerative diseases, and cancer. The transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activates many cytoprotective proteins within the nucleus to maintain homeostasis during oxidative stress. In vertebrates, Nrf2 levels are regulated by the Kelch-family protein Keap1 (Kelch-like ECH-associated protein 1) in the absence of stress according to a canonical redox control pathway.
View Article and Find Full Text PDFThe skeletons of sponges (Phylum Porifera) are comprised of collagen, often embedded with small siliceous structures (spicules) arranged in various forms to provide strength and flexibility. The main proteins responsible for the formation of the spicules in demosponges are the silicateins, which are related to the cathepsins L of other animals. While the silicatein active site, necessary for the formation of biosilica crystals, is characterized by the amino acids SHN, different variants of the silicatein genes have been found, some that retain SHN at the active site and some that don't.
View Article and Find Full Text PDFThe function of Notch signaling was previously studied in two cnidarians, Hydra and Nematostella, representing the lineages Hydrozoa and Anthozoa, respectively. Using pharmacological inhibition in Hydra and a combination of pharmacological and genetic approaches in Nematostella, it was shown in both animals that Notch is required for tentacle morphogenesis and for late stages of stinging cell maturation. Surprisingly, a role for Notch in neural development, which is well documented in bilaterians, was evident in embryonic Nematostella but not in adult Hydra.
View Article and Find Full Text PDF