Publications by authors named "Liam Abbott"

Data within biobanks capture broad yet detailed indices of human variation, but biobank-wide insights can be difficult to extract due to complexity and scale. Here, using large-scale factor analysis, we distill hundreds of variables (diagnoses, assessments and survey items) into 35 latent constructs, using data from unrelated individuals with predominantly estimated European genetic ancestry in UK Biobank. These factors recapitulate known disease classifications, disentangle elements of socioeconomic status, highlight the relevance of psychiatric constructs to health and improve measurement of pro-health behaviours.

View Article and Find Full Text PDF

While blood gene signatures have shown promise in tuberculosis (TB) diagnosis and treatment monitoring, most signatures derived from a single cohort may be insufficient to capture TB heterogeneity in populations and individuals. Here we report a new generalized approach combining a network-based meta-analysis with machine-learning modeling to leverage the power of heterogeneity among studies. The transcriptome datasets from 57 studies (37 TB and 20 viral infections) across demographics and TB disease states were used for gene signature discovery and model training and validation.

View Article and Find Full Text PDF

Classical statistical genetics theory defines dominance as any deviation from a purely additive, or dosage, effect of a genotype on a trait, which is known as the dominance deviation. Dominance is well documented in plant and animal breeding. Outside of rare monogenic traits, however, evidence in humans is limited.

View Article and Find Full Text PDF

To discover novel genes underlying amyotrophic lateral sclerosis (ALS), we aggregated exomes from 3,864 cases and 7,839 ancestry-matched controls. We observed a significant excess of rare protein-truncating variants among ALS cases, and these variants were concentrated in constrained genes. Through gene level analyses, we replicated known ALS genes including SOD1, NEK1 and FUS.

View Article and Find Full Text PDF
Article Synopsis
  • * The analysis discovered 30 significant genetic loci linked to bipolar disorder, including 20 that hadn't been previously identified, which involve genes related to ion channels and neurotransmitter systems.
  • * The study also showed that Bipolar I disorder has a genetic connection to schizophrenia, particularly linked to psychosis, while Bipolar II disorder is more closely related to major depressive disorder, shedding light on potential biological mechanisms and clinical implications.
View Article and Find Full Text PDF