Publications by authors named "Lia A"

Objectives: Cerebellar ataxia, neuropathy, and vestibular areflexia syndrome results from variations in and is mostly caused by intronic biallelic pathogenic expansions (RE-). Refractory chronic cough (RCC) is frequently observed for years to decades preceding ataxia onset. Whether peripheral nerves are involved in the presymptomatic phase characterized by RCC is uncertain.

View Article and Find Full Text PDF

Chronic cough is a frequent disorder that is defined by cough of more than 8 weeks duration. Despite extensive investigation, some patients exhibit no aetiology and others do not respond to specific treatments directed against apparent causes of cough. Such patients are identified as having unexplained or refractory chronic cough.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (hiPSCs) represent a powerful tool to investigate neuropathological disorders in which the cells of interest are inaccessible, such as in the Charcot-Marie-Tooth disease (CMT), the most common inherited peripheral neuropathy. Developing appropriate cellular models becomes crucial in order to both study the disease's pathophysiology and test new therapeutic approaches. The generation of hiPS cellular models for disorders caused by a single nucleotide variation has been significantly improved following the development of CRISPR-based editing tools.

View Article and Find Full Text PDF

Nonsense mutations that generate a premature termination codon (PTC) can induce both the accelerated degradation of mutated mRNA compared with the wild type version of the mRNA or the production of a truncated protein. One of the considered therapeutic strategies to bypass PTCs is their "readthrough" based on small-molecule drugs. These molecules promote the incorporation of a near-cognate tRNA at the PTC position through the native polypeptide chain.

View Article and Find Full Text PDF
Article Synopsis
  • Misfolded glycoproteins in the endoplasmic reticulum (ER) are retained by the enzyme UGGT, which recognizes and marks them for retention by re-glucosylating their N-linked glycans.
  • In the context of certain congenital mutations in the Trop-2 glycoprotein, which is associated with gelatinous drop-like corneal dystrophy (GDLD), these misfolded versions of Trop-2 are unable to reach the plasma membrane and remain trapped in the ER.
  • The study found that inhibiting UGGT1 in mammalian cells can restore membrane localization of these mutants, suggesting that targeting UGGT1 may offer a new treatment approach for diseases caused by similar misfolded glycoproteins that still
View Article and Find Full Text PDF

The human brain is composed of nearly one hundred billion neurons and an equal number of glial cells, including macroglia, i.e., astrocytes and oligodendrocytes, and microglia, the resident immune cells of the brain.

View Article and Find Full Text PDF

Misfolded glycoprotein recognition and endoplasmic reticulum (ER) retention are mediated by the ER glycoprotein folding quality control (ERQC) checkpoint enzyme, UDP-glucose glycoprotein glucosyltransferase (UGGT). UGGT modulation is a promising strategy for broad-spectrum antivirals, rescue-of-secretion therapy in rare disease caused by responsive mutations in glycoprotein genes, and many cancers, but to date no selective UGGT inhibitors are known. The small molecule 5-[(morpholin-4-yl)methyl]quinolin-8-ol (5M-8OH-Q) binds a UGGT "WY" conserved surface motif conserved across UGGTs but not present in other GT24 family glycosyltransferases.

View Article and Find Full Text PDF

Nonsense mutations are involved in multiple peripheral neuropathies. These mutations induce the presence of a premature termination codon (PTC) at the mRNA level. As a result, a dysfunctional or truncated protein is synthesized, or even absent linked to nonsense-mediated mRNA degradation (NMD) system activation.

View Article and Find Full Text PDF
Article Synopsis
  • The analysis focuses on CASP15 targets, emphasizing their biological importance and functional roles within protein structures.
  • Authors assess key protein features and how well these were represented in the submitted predictions, noting successes and consistent challenges.
  • The text highlights the necessity for improved scoring strategies and the future need for integrating computational methods with experimental techniques in structural molecular biology.
View Article and Find Full Text PDF

Endoplasmic reticulum (ER) retention of mis-folded glycoproteins is mediated by the ERlocalised eukaryotic glycoprotein secretion checkpoint, UDP-glucose glycoprotein glucosyl-transferase (UGGT). The enzyme recognises a mis-folded glycoprotein and flags it for ER retention by reglucosylating one of its N-linked glycans. In the background of a congenital mutation in a secreted glycoprotein gene, UGGT-mediated ER retention can cause rare disease even if the mutant glycoprotein retains activity ("responsive mutant").

View Article and Find Full Text PDF
Article Synopsis
  • Hereditary sensory neuropathy (HSN) is a diverse group of disorders, with one subtype, HSN1F, linked to specific genetic mutations.
  • A study identified a significant deletion in the gene on chromosome 11 of a patient with sensory neuropathy, potentially resulting in a harmful mutation and linked to cellular irregularities.
  • The findings highlight the need for further research into genetic variations in HSN to enhance understanding and diagnosis for affected patients.
View Article and Find Full Text PDF
Article Synopsis
  • Mutations in the EGR2 gene are linked to several hereditary neuropathies, including types of Charcot-Marie-Tooth disease and congenital neuropathy.
  • A study identified 14 patients with EGR2 mutations, revealing a mean age of 44 years and a disease duration of 28 years, with common symptoms like pes cavus and distal limb weakness in all cases.
  • The results show that EGR2-related neuropathies are rare progressive conditions that can present in childhood or adulthood, often misdiagnosed as inflammatory neuropathies, and include a range of previously unreported mutations.
View Article and Find Full Text PDF

The brain is a highly energy demanding organ, which accounts in humans for the 20% of total energy consumption at resting state although comprising only 2% of the body mass. The necessary delivery of nutrients to brain parenchyma is ensured by the cerebral circulatory system, through the exchange of glucose and oxygen (O) at the capillary level. Notably, a tight spatial and temporal correlation exists between local increases in neuronal activity and the subsequent changes in regional cerebral blood flow.

View Article and Find Full Text PDF

Calcium dynamics in astrocytes represent a fundamental signal that through gliotransmitter release regulates synaptic plasticity and behaviour. Here we present a longitudinal study in the PS2APP mouse model of Alzheimer's disease (AD) linking astrocyte Ca hypoactivity to memory loss. At the onset of plaque deposition, somatosensory cortical astrocytes of AD female mice exhibit a drastic reduction of Ca signaling, closely associated with decreased endoplasmic reticulum Ca concentration and reduced expression of the Ca sensor STIM1.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a hereditary and sporadic neurodegenerative illness defined by the gradual and cumulative loss of neurons in specific brain areas. The processes that cause AD are still under investigation and there are no available therapies to halt it. Current progress puts at the forefront the "calcium (Ca) hypothesis" as a key AD pathogenic pathway, impacting neuronal, astrocyte and microglial function.

View Article and Find Full Text PDF

The plasticity of glutamatergic transmission in the ventral tegmental area (VTA) represents a fundamental mechanism in the modulation of dopamine neuron burst firing and phasic dopamine release at target regions. These processes encode basic behavioral responses, including locomotor activity, learning and motivated behaviors. Here we describe a hitherto unidentified mechanism of long-term synaptic plasticity in mouse VTA.

View Article and Find Full Text PDF

CANVAS, a rare disorder responsible for late-onset ataxia of autosomal recessive inheritance, can be misdiagnosed. We investigated a series of eight patients with sensory neuropathy and/or an unexplained cough, who appeared to suffer from CANVAS, and we emphasized the clinical clues for early diagnosis. Investigations included clinical and routine laboratory analyses, skin biopsy, nerve biopsy and molecular genetics.

View Article and Find Full Text PDF

Inherited peripheral neuropathy (IPN) is a heterogeneous group of disorders due to pathogenic variation in more than 100 genes. In 2012, the first cases of IPN associated with HINT1 pathogenic variations were described in 33 families sharing the same phenotype characterized by an axonal neuropathy with neuromyotonia and autosomal recessive inheritance (NMAN: OMIM #137200). Histidine Triad Nucleotide Binding Protein 1 regulates transcription, cell-cycle control, and is possibly involved in neuropsychiatric pathophysiology.

View Article and Find Full Text PDF

The mechanisms underlying the dichotomic cortical/basal ganglia dopaminergic abnormalities in schizophrenia are unclear. Astrocytes are important non-neuronal modulators of brain circuits, but their role in dopaminergic system remains poorly explored. Microarray analyses, immunohistochemistry, and two-photon laser scanning microscopy revealed that Dys1 hypofunction increases the reactivity of astrocytes, which express only the Dys1A isoform.

View Article and Find Full Text PDF

Next-generation sequencing (NGS) allows the detection of plentiful mutations increasing the rate of patients getting a positive diagnosis. However, while single-nucleotide variants (SNVs) or small indels can be easily detected, structural variations (SVs) such as copy number variants (CNVs) are often not researched. In Charcot-Marie-Tooth disease (CMT), the most common hereditary peripheral neuropathy, the -duplication was the first variation detected.

View Article and Find Full Text PDF

Next generation sequencing (NGS) is strategically used for genetic diagnosis in patients with Charcot-Marie-Tooth disease (CMT) and related disorders called non-syndromic inherited peripheral neuropathies (NSIPN) in this paper. With over 100 different CMT-associated genes involved and ongoing discoveries, an important interlaboratory diversity of gene panels exists at national and international levels. Here, we present the work of the French National Network for Rare Neuromuscular Diseases (FILNEMUS) genetic diagnosis section which coordinates the seven French diagnosis laboratories using NGS for peripheral neuropathies.

View Article and Find Full Text PDF

Objectives: To study the phenotype of macrophage infiltrates and their role in angiogenesis in different idiopathic inflammatory myopathies (IIMs).

Methods: The density and distribution of the subpopulations of macrophages subsets (M1, inducible nitric oxide+, CD11c+; M2, arginase-1+), endomysial capillaries (CD31+, FLK1+), degenerating (C5b-9+) and regenerating (NCAM+) myofibres were investigated by immunohistochemistry in human muscle samples of diagnostic biopsies from a large cohort of untreated patients (n: 81) suffering from anti-3-hydroxy-3-methylglutaryl coenzyme A reductase (anti-HMGCR)+ immune mediated necrotizing myopathy (IMNM), anti-signal recognition particle (anti-SRP)+ IMNM, seronegative IMNM, DM, PM, PM with mitochondrial pathology, sporadic IBM, scleromyositis, and anti-synthetase syndrome. The samples were compared with mitochondrial myopathy and control muscle samples.

View Article and Find Full Text PDF

Mutations in the ganglioside-induced differentiation associated protein 1 () gene have been associated with demyelinating and axonal forms of Charcot-Marie-Tooth (CMT) disease, the most frequent hereditary peripheral neuropathy in humans. Previous studies reported the prevalent expression in neural tissues and cells, from animal models. Here, we described the first GDAP1 functional study on human induced-pluripotent stem cells (hiPSCs)-derived motor neurons, obtained from normal subjects and from a CMT2H patient, carrying the homozygous c.

View Article and Find Full Text PDF