Cancer cell overexpresses numerus proteins, however, how these up-regulated proteins, especially those enzymatically opposite kinases and phosphatases, act together to promote oncogenesis is unknown. Here, we reported that protein tyrosine phosphatase H1 (PTPH1) is a scaffold protein for receptor tyrosine kinase (HER2) to potentiate breast tumorigenesis. PTPH1 utilizes its PDZ domain to bind HER2, p38γ, PBK, and YAP1 and to increase HER2 nuclear translocation, stemness, and oncogenesis.
View Article and Find Full Text PDFBackground: Intratumor-resident bacteria represent an integral component of the tumor microenvironment (TME). Microbial dysbiosis, which refers to an imbalance in the bacterial composition and bacterial metabolic activities, plays an important role in regulating breast cancer development and progression. However, the impact of specific intratumor-resident bacteria on tumor progression and their underlying mechanisms remain elusive.
View Article and Find Full Text PDFTrends Cell Biol
November 2024
Circulating tumor cells (CTCs), which have the heterogeneity and histological properties of the primary tumor and metastases, are shed from the primary tumor and/or metastatic lesions into the vasculature and initiate metastases at remote sites. In the clinic, CTCs are used extensively in liquid biopsies for early screening, diagnosis, treatment, and prognosis. Current research focuses on using CTC-derived models to study tumor heterogeneity and metastasis, with 3D organoids emerging as a promising tool in cancer research and precision oncology.
View Article and Find Full Text PDFBackground: BCR-ABL is a constitutively active tyrosine kinase that stimulates multiple downstream signaling pathways to promote the survival and proliferation of chronic myeloid leukemia (CML) cells. The clinical application of specific BCR-ABL tyrosine kinase inhibitors (TKIs) has led to significantly improved prognosis and overall survival in CML patients compared to previous treatment regimens. However, direct targeting of BCR-ABL does not eradicate CML cells expressing T315I-mutated BCR-ABL.
View Article and Find Full Text PDFBackground: Multidrug resistance (MDR) limits successful cancer chemotherapy. P-glycoprotein (P-gp), BCRP and MRP1 are the key triggers of MDR. Unfortunately, no MDR modulator was approved by FDA to date.
View Article and Find Full Text PDFSignal Transduct Target Ther
April 2024
Circulating tumor cells (CTCs) are precursors of distant metastasis in a subset of cancer patients. A better understanding of CTCs heterogeneity and how these CTCs survive during hematogenous dissemination could lay the foundation for therapeutic prevention of cancer metastasis. It remains elusive how CTCs evade immune surveillance and elimination by immune cells.
View Article and Find Full Text PDFCancer immunotherapy, exemplified by the remarkable clinical benefits of the immune checkpoint blockade and chimeric antigen receptor T-cell therapy, is revolutionizing cancer therapy. They induce long-term tumor regression and overall survival benefit in many types of cancer. With the advances in our knowledge about the tumor immune microenvironment, remarkable progress has been made in the development of small-molecule drugs for immunotherapy.
View Article and Find Full Text PDFMultidrug resistance (MDR) is one of the primary factors that produces treatment failure in patients receiving cancer chemotherapy. MDR is a complex multifactorial phenomenon, characterized by a decrease or abrogation of the efficacy of a wide spectrum of anticancer drugs that are structurally and mechanistically distinct. The overexpression of the ATP-binding cassette (ABC) transporters, notably ABCG2 and ABCB1, are one of the primary mediators of MDR in cancer cells, which promotes the efflux of certain chemotherapeutic drugs from cancer cells, thereby decreasing or abolishing their therapeutic efficacy.
View Article and Find Full Text PDFCancer stem-like cells (CSCs), a subpopulation of cancer cells, possess remarkable capability in proliferation, self-renewal, and differentiation. Their presence is recognized as a crucial factor contributing to tumor progression and metastasis. CSCs have garnered significant attention as a therapeutic focus and an etiologic root of treatment-resistant cells.
View Article and Find Full Text PDFSignal Transduct Target Ther
August 2023
Immune checkpoint inhibitors (ICIs) have induced durable clinical responses in a subset of patients with colorectal cancer (CRC). However, the dis-satisfactory response rate and the lack of appropriate biomarkers for selecting suitable patients to be treated with ICIs pose a major challenge to current immunotherapies. Inflammation-related molecule A20 is closely related to cancer immune response, but the effect of A20 on "eat-me" signal and immunotherapy efficacy remains elusive.
View Article and Find Full Text PDFColonies formed by bacteria, archaea, fungi, and viral groups and their genomes, metabolites, and expressed proteins constitute complex human microbiomes. An increasing evidences showed that carcinogenesis and disease progression were link to microbiomes. Different organ sources, their microbial species, and their metabolites are different; the mechanisms of carcinogenic or procancerous are also different.
View Article and Find Full Text PDFCancer development is closely associated with immunosuppressive tumor microenvironment (TME) that attenuates antitumor immune responses and promotes tumor cell immunologic escape. The sequential conversion of extracellular ATP into adenosine by two important cell-surface ectonucleosidases CD39 and CD73 play critical roles in reshaping an immunosuppressive TME. The accumulated extracellular adenosine mediates its regulatory functions by binding to one of four adenosine receptors (A1R, A2AR, A2BR and A3R).
View Article and Find Full Text PDFIntroduction: Various studies have reported that anti-PD-1/PD-L1 treatment may lead to the rapid development of tumors called hyperprogressive disease (HPD). A nomogram for HPD prediction in NSCLC patients is urgently needed.
Methods: This retrospective cohort study included 176 cases for establishing a model of HPD prediction and 85 cases for validation in advanced NSCLC patients treated with PD-1/PD-L1 inhibitors.
Metastasis is the most prevalent cause of cancer deaths, and immunological components of the tumor microenvironment, especially tumor-associated macrophages (TAMs), play a vital role in cancer metastasis. However, the underlying mechanisms of TAMs on non-small-cell lung cancer (NSCLC) metastasis remain largely unexplored. Herein, we demonstrated that M2-like TAMs facilitate the migration and invasion of cancer cells in vitro and in vivo through intercellular delivery of M2-like macrophage-derived exosomes (M2-exos).
View Article and Find Full Text PDFEpidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are the preferential options for advanced non-small cell lung cancer (NSCLC) patients harboring EGFR mutations. Osimertinib is a potent irreversible third-generation EGFR-TKI targeting EGFR mutations but has little effect on wild-type EGFR. In view of its remarkable efficacy and manageable safety, osimertinib was recommended as the standard first-line treatment for advanced or metastatic NSCLC patients with EGFR mutations.
View Article and Find Full Text PDFMultidrug resistance (MDR) is the phenomenon in which cancer cells simultaneously develop resistance to a broad spectrum of structurally and mechanistically unrelated drugs. MDR severely hinders the effective treatment of cancer and is the major cause of chemotherapy failure. ATP-binding cassette (ABC) transporters are extensively expressed in various body tissues, and actively transport endogenous and exogenous substrates through biological membranes.
View Article and Find Full Text PDFBackground: Multidrug resistance (MDR) is a complex phenomenon that frequently leads to chemotherapy failure during cancer treatment. The overexpression of ATP-binding cassette (ABC) transporters represents the major mechanism contributing to MDR. To date, no effective MDR modulator has been applied in clinic.
View Article and Find Full Text PDFA dysbiosis in microbial diversity or functionality can promote disease development. Emerging preclinical and clinical evidence emphasizes the interplay between microbiota and both disease evolution and the treatment response of different cancers. One bacterium that has garnered much attention in a few cancer microbiota studies is (Fn).
View Article and Find Full Text PDFFBXW7 (F-Box and WD Repeat Domain Containing 7) (also referred to as FBW7 or hCDC4) is a component of the Skp1-Cdc53 / Cullin-F-box-protein complex (SCF/β-TrCP). As a member of the F-box protein family, FBXW7 serves a role in phosphorylation-dependent ubiquitination and proteasome degradation of oncoproteins that play critical role(s) in oncogenesis. FBXW7 affects many regulatory functions involved in cell survival, cell proliferation, tumor invasion, DNA damage repair, genomic instability and telomere biology.
View Article and Find Full Text PDFSignal Transduct Target Ther
March 2022
Cancer is the leading cause of death worldwide, and its treatment and outcomes have been dramatically revolutionised by targeted therapies. As the most frequently mutated oncogene, Kirsten rat sarcoma viral oncogene homologue (KRAS) has attracted substantial attention. The understanding of KRAS is constantly being updated by numerous studies on KRAS in the initiation and progression of cancer diseases.
View Article and Find Full Text PDFERK pathway regulated the programmed death ligand-1 (PD-L1) expression which was linked to the response of programmed death-1 (PD-1)/PD-L1 blockade therapy. So it is deducible that ERK inhibitor could enhance the efficacy of PD-1 inhibitor in cancer immunotherapy. In this study, PD0325901, an oral potent ERK inhibitor, strongly enhanced the efficacy of PD-1 antibody and models in non-small cell lung carcinoma (NSCLC) cells.
View Article and Find Full Text PDFThrough precursor-directed biosynthesis, feeding halogenated (F-, Cl-, Br-, I-) or methoxy-substituted 4-methyl-3-hydroxyanthranilic acid (4-MHA) analogues to the -deleted mutant strain of SCSIO ZS0073 led to the production of ten new actinomycin analogues (-). Several of the actinomycin congeners displayed impressive antimicrobial activities, with MIC values spanning 0.06-64 μg/mL to clinically derived antibiotic resistant pathogens, including , , and , with low cytotoxicity.
View Article and Find Full Text PDF