Publications by authors named "LiPu Du"

Histone acetylation is the earliest and most well-characterized of post-translation modifications. It is mediated by histone acetyltransferases (HAT) and histone deacetylases (HDAC). Histone acetylation could change the chromatin structure and status and further regulate gene transcription.

View Article and Find Full Text PDF

The () gene controls the caryopsis type of cereal crops by regulating lipid biosynthetic pathways. Based on the sequence and its homologous gene sequences in wheat, a conserved sgRNA was designed to obtain the mutants from the barley variety "Vlamingh" and the wheat variety "Fielder" -mediated transformation. A total of 19 and 118 transgenic plants were obtained, and 11 and 61 mutant plants were identified in T transgenic plants in barley and wheat after PCR-RE detection, and the editing efficiencies of the targeted gene were 57.

View Article and Find Full Text PDF

Although great progress has been achieved regarding wheat genetic transformation technology in the past decade, genotype dependency, the most impactful factor in wheat genetic transformation, currently limits the capacity for wheat improvement by transgenic integration and genome-editing approaches. The application of regeneration-related genes during in vitro culture could potentially contribute to enhancement of plant transformation efficiency. In the present study, we found that overexpression of the wheat gene TaWOX5 from the WUSCHEL family dramatically increases transformation efficiency with less genotype dependency than other methods.

View Article and Find Full Text PDF

Wheat protein disulfide isomerase (PDI) is involved in the formation of glutenin macropolymers (GMP) and the correct folding and accumulation of storage proteins in endosperm. In present study, seven types of homozygous TaPDI gene edited mutants were obtained by CRISPR/Cas9 technology, which were confirmed by PCR-RE and sequencing. Compared with other mutants and wild type (WT), the grain length and width in mutant PDI-abd-6 which was edited for the three TaPDI homoeologous genes were reduced, and the grain middle parts were slumped.

View Article and Find Full Text PDF

The WOX family is a group of plant-specific transcription factors which regulate plant growth and development, cell division and differentiation. From the available genome sequence databases of nine Triticeae species, 199 putative genes were identified. Most of the identified genes were distributed on the chromosomes of homeologous groups 1 to 5 and originated via the orthologous evolution approach.

View Article and Find Full Text PDF

The drought and salt tolerances of wheat were enhanced by ectopic expression of the Arabidopsis ornithine aminotransferase (AtOAT) encoded gene. The OAT was confirmed to play a role in proline biosynthesis in wheat. Proline (Pro) accumulation is a common response to both abiotic and biotic stresses in plants.

View Article and Find Full Text PDF

The TaQ alleles as one of the AP2-like transcription factors in common wheat (Triticum aestivum) play an important role in the evolution of spike characteristics from wild and domesticated emmer to modern wheat cultivars. Its loss-of-function mutant not only changed threshability and spike architecture but also affected plant height, flowering time, and floret structure. However, the comprehensive functions of TaAQ and TaDq genes in wheat have not been fully elucidated yet.

View Article and Find Full Text PDF

Dissecting the functions of high molecular weight glutenin subunits (HMW-GSs) is helpful for improving wheat quality via breeding. In this study, we used a wheat mutant AS273 in which HMW-GS 1Dy12 was silenced to investigate the silencing mechanism of 1Dy12 and its effects on gluten accumulation and flour-processing quality. Results suggested that the expression of 1Dy12 in AS273 was decreased by one fifth during grain development; a stop codon produced by a base mutation (C/T) led to truncated translation; the absence of 1Dy12 stimulated the accumulation of low molecular weight glutenin subunits (LMW-GSs), gliadins, and glutenin macropolymers, and was resulted in larger protein bodies; AS273 had an inferior flour-processing performance.

View Article and Find Full Text PDF

Three genes designated DvLox, Pm21#4, and Pm21#4-H identified in a wheat-Dasypyrum villosum#4 T6V#4S·6DL translocation line Pm97033 conferred wheat for powdery mildew resistance. Powdery mildew (PM) caused by Blumeria graminis f. sp.

View Article and Find Full Text PDF

The use of CRISPR/LbCpf1 and CRISPR/xCas9 systems in wheat have not yet been reported. In this study, we compared the efficiencies of three CRISPR editing systems (SpCas9, LbCpf1, and xCas9), and three different promoters (OsU6a, TaU3, and TaU6) that drive single-guide (sg)RNA, which were introduced into wheat via Agrobacterium-mediated transformation. The results indicated that TaU3 was a better choice than OsU6a or TaU6.

View Article and Find Full Text PDF

Maize and transcription factors belong to the MYB-type and bHLH families, respectively, and control anthocyanin biosynthesis. In this study, -mediated transformation was used to generate transgenic wheat plants that overexpress and or both, with the objective of developing anthocyanin-enriched wheat germplasm. Three kinds of stable transgenic wheat lines were obtained.

View Article and Find Full Text PDF

Background: Dasypyrum villosum is an important wild species of wheat (Triticum aestivum L.) and harbors many desirable genes that can be used to improve various traits of wheat. Compared with other D.

View Article and Find Full Text PDF

Transcriptome data were used to develop 134 Aegilops longissima specific PCR markers and their comparative maps were constructed by contrasting with the homologous genes in the wheat B genome. Three wheat- Ae. longissima 1BL·1S S translocation lines were identified using the correspondence markers.

View Article and Find Full Text PDF

Arginase (ARG) contributes to nitrogen remobilization by conversion of arginine to ornithine and urea. However, wheat ARG genes have not yet been identified. Here we isolated and characterized ARG genes from wheat and its progenitor species and found that a single copy was present in wheat progenitors.

View Article and Find Full Text PDF

Twenty-five Dasypyrum villosum 6V#4S-specific PCR markers were developed using transcriptome data and further assigned to comparative genomic maps of wheat chromosome 6A, 6B, and 6D and barley chromosome 6H contrasting their homologous genes in these genomes. Two Dasypyrum villosum accessions, D.v#2 and No.

View Article and Find Full Text PDF

Sharp eyespot, caused mainly by the necrotrophic fungus , is a destructive disease in hexaploid wheat ( L.). In , certain cinnamyl alcohol dehydrogenases (CADs) have been implicated in monolignol biosynthesis and in defense response to bacterial pathogen infection.

View Article and Find Full Text PDF

The necrotrophic fungus Rhizoctonia cerealis is the major pathogen causing sharp eyespot disease in wheat (Triticum aestivum). Nucleotide-binding leucine-rich repeat (NB-LRR) proteins often mediate plant disease resistance to biotrophic pathogens. Little is known about the role of NB-LRR genes involved in wheat response to R.

View Article and Find Full Text PDF

Genotype specificity is a big problem lagging the development of efficient hexaploid wheat transformation system. Increasingly, the biosecurity of genetically modified organisms is garnering public attention, so the generation of marker-free transgenic plants is very important to the eventual potential commercial release of transgenic wheat. In this study, 15 commercial Chinese hexaploid wheat varieties were successfully transformed via an Agrobacterium-mediated method, with efficiency of up to 37.

View Article and Find Full Text PDF

Wheat is recalcitrant to genetic transformation. A potential solution is to manipulate the expression of some host proteins involved in T-DNA integration process. VirE2 interacting protein 2 (VIP2) plays an important role in T-DNA transport and integration.

View Article and Find Full Text PDF

The necrotrophic fungus Rhizoctonia cerealis is a major pathogen of sharp eyespot that is a devastating disease of wheat (Triticum aestivum). Little is known about roles of MYB genes in wheat defense response to R. cerealis.

View Article and Find Full Text PDF

High molecular weight glutenin subunits (HMW-GSs) are important seed storage proteins in wheat (Triticum aestivum) that determine wheat dough elasticity and processing quality. Clarification of the defined effectiveness of HMW-GSs is very important to breeding efforts aimed at improving wheat quality. To date, there have no report on the expression silencing and quality effects of 1Bx20 and 1By20 at the Glu-B1 locus in wheat.

View Article and Find Full Text PDF