Publications by authors named "LiJian Yang"

Energy absorption and consumption are essential for the activity of single neurons and neuronal networks. The synchronization mode transition and energy dependence in a delay-coupled FitzHugh-Nagumo (FHN) neuronal system driven by chaotic activity are investigated in this paper. With the change of chaotic current intensity, it was found that the synchronization mode of coupled neurons undergoes synchronous state, transition state, anti-phase state, alternating asynchronous and anti-phase state, and chaotic current-induced chaotic state.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how the structure of neural networks affects working memory (WM) function, focusing on differences in microcircuits within a WM gradient network.
  • A spiking neural network model was developed that accurately mimics WM characteristics, showing that activity during memory delays is linked to the association cortex rather than the sensory cortex.
  • Key findings include the importance of small-world structures, balance between excitation and inhibition, and circuit cycles in sustaining WM activity, highlighting the need for further research on structural gradients in the brain.
View Article and Find Full Text PDF

Behaviors and auditory physiological responses of some species of echolocating bats remain unaffected after exposure to intense noise, but information on the underlying mechanisms remains limited. Here, we studied whether the vocalization-induced middle ear muscle (MEM) contractions (MEM reflex) and auditory fovea contributed to the unimpaired auditory sensitivity of constant frequency-frequency modulation (CF-FM) bats after exposure to broad-band intense noise. The vocalizations of the CF-FM bat, Hipposideros pratti, were inhibited through anesthesia to eliminate the vocalization-induced MEM reflex.

View Article and Find Full Text PDF

Weak magnetic detection technology can detect stress concentration areas in ferromagnetic materials. However, the stress non-uniform characteristics of pipeline welds lead to significant differences in stress distribution range and values between inner wall welds and outer wall welds. This discrepancy makes it crucial to further evaluate the impact of stress non-uniformity on magnetic signals.

View Article and Find Full Text PDF

Glioblastoma stem cells (GSCs) have been implicated in the self-renewal and treatment resistance of glioblastoma (GBM). Our previous study found that 4,5-dimethoxycanthin-6-one has the potential to inhibit GBM cell proliferation. This current study aims to elucidate the molecular mechanism underlying the effects of 4,5-dimethoxycanthin-6-one in GBM development.

View Article and Find Full Text PDF

To achieve the accuracy and anti-interference of the motion control of the soft robot more effectively, the motion control strategy of the pneumatic soft bionic robot based on the improved Central Pattern Generator (CPG) is proposed. According to the structure and motion characteristics of the robot, a two-layer neural network topology model for the robot is constructed by coupling 22 Hopfield neuron nonlinear oscillators. Then, based on the Adaptive Neuro-Fuzzy Inference System (ANFIS), the membership functions are offline learned and trained to construct the CPG-ANFIS-PID motion control strategy for the robot.

View Article and Find Full Text PDF

In laser beam processing, the angle or offset between the auxiliary gas and the laser beam axis have been proved to be two new process optimization parameters for improving cutting speed and quality. However, a traditional electromechanical actuator cannot achieve high-speed and high-precision motion control with a compact structure. This paper proposes a magnetic levitation actuator which could realize the 5-DOF motion control of a lens using six groups of differential electromagnets.

View Article and Find Full Text PDF

Magnetic flux leakage (MFL) technology is remarkable for its capability to detect pipeline geometric deformation and general corrosion defects. However, it cannot characterize the MFL behavior in stress-concentrated areas, thereby greatly challenging the subsequent pipeline maintenance. This study suggests that the MFL characteristics of pipeline in stress-concentrated areas are caused by the combined effect of the face magnetic charge on the deformed end-face and the body magnetic charge of the dislocation stack.

View Article and Find Full Text PDF

miR-374a-5p expression and localization in intracranial aneurysm (IA) tissues were detected, and its correlation with vascular smooth muscle cells (VSMCs) and macrophage markers was analyzed. Using platelet-derived growth factor-BB (PDGF-BB) induced VSMC model, elastase-induced IA rat model. Subsequently, miR-374a-5p was knocked down or overexpressed.

View Article and Find Full Text PDF

Over the past decade, dynamic schemes have been proposed for the use of bistable systems in the design of logic devices. A bistable system in a noisy background can operate as a reliable logic gate in a moderate noise level, which is called a logical stochastic resonance (LSR). In this paper, we theoretically explore the emergence of LSR in general bistable systems and identify the dynamical mechanisms of LSR.

View Article and Find Full Text PDF

Pipeline magnetic flux leakage inspection is widely used in the evaluation of material defect detection due to its advantages of having no coupling agent and easy implementation. The quantification of defect size is an important part of magnetic flux leakage testing. Defects of different geometrical dimensions produce signal waveforms with different characteristics after excitation.

View Article and Find Full Text PDF

The environment noise may disturb animal behavior and echolocation via three potential mechanisms: acoustic masking, reduced attention and noise avoidance. Compared with the mechanisms of reduced attention and noise avoidance, acoustic masking is thought to occur only when the signal and background noise overlap spectrally and temporally. In this study, we investigated the effects of spectrally non-overlapping noise on echolocation pulses and electrophysiological responses of a constant frequency-frequency modulation (CF-FM) bat, .

View Article and Find Full Text PDF

Magnetic leakage detection technology plays an important role in the long-oil pipeline. Automatic segmentation of defecting images is crucial for the detection of magnetic flux leakage (MFL) works. At present, accurate segmentation for small defects has always been a difficult problem.

View Article and Find Full Text PDF

The Lombard effect, referring to an involuntary rise in vocal intensity, is a widespread vertebrate mechanism that aims to maintain signal efficiency in response to ambient noise. Previous studies showed that the Lombard effect could be sufficiently implemented at subcortical levels and operated by continuously monitoring background noise, requiring some subcortical auditory sensitive neurons to have continuous responses to background noise. However, such neurons have not been well characterized.

View Article and Find Full Text PDF

In order to solve the problem of the quantification of detection signals in the magnetic flux leakage (MFL) of defective in-service oil and gas pipelines, a non-uniform magnetic charge model was established based on magnetic effects. The distribution patterns of magnetic charges under different stresses were analyzed. The influences of the elastic load and plastic deformation on the characteristic values of MFL signals were quantitatively assessed.

View Article and Find Full Text PDF

Background: Hypertensive intracerebral hemorrhage (HICH) is a life-threatening disease and lacks effective treatments. Previous studies have confirmed that metabolic profiles altered after ischemic stroke, but how brain metabolism changes after HICH was unclear. This study aimed to explore the metabolic profiles after HICH and the therapeutic effects of soyasaponin I on HICH.

View Article and Find Full Text PDF

Weak magnetic detection technology is an effective method to identify stress-induced damage to ferromagnetic materials, and it especially possesses great application potential in long-distance oil and gas pipeline weld crack detection. In the process of pipeline operation, due to internal pressure and external loads, local stress concentration may be generated, and partial stress concentration may lead to local cracks and expansion of the pipe. In order to improve the accuracy of magnetic signal analysis for ferromagnetic materials under internal pressure, the causes of magnetic signal generation at pipeline welds were analyzed from a microscopic perspective.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focused on developing 216 recombinant inbred lines (RILs) from crossing the winter wheat line Tianmin 668 with a susceptible cultivar Jingshuang 16 to analyze resistance to powdery mildew.
  • - Three specific genetic loci were identified on chromosomes 2BL, 2AS, and 5AL in Tianmin 668 that confer adult-plant resistance (APR) to powdery mildew, with one locus showing the strongest effect.
  • - The researchers created a specialized PCR marker for this more effective resistance locus, which can enhance efforts to breed powdery mildew-resistant wheat cultivars using Tianmin 668.
View Article and Find Full Text PDF

A key step to the establishment of a tiered healthcare system is equitable access to basic primary healthcare services for all. However, no quantitative research on the national status quo of primary healthcare accessibility in China exists. We filled this gap by estimating spatial accessibility to primary healthcare centers (PHCs) and mapping its inequality across the mainland China.

View Article and Find Full Text PDF

The balanced-field electromagnetic technique is an effective in-line inspection method for pipeline cracks. To address the problem that the interference signal generated by the tilt jitter of the sensor during the detection process affects the judgment of cracks, this paper proposes a method to differentiate the crack detection signal from the sensor jitter signal by using an amplitude-phase composite figure. The generation principle of the detection signal was analyzed by using the mutual inductance model, and the amplitude-phase composite figure was constructed by using the components of the detection signal after quadrature demodulation.

View Article and Find Full Text PDF

Accidents occur frequently in urban gas pipelines, and pipeline damage detection is an important means of ensuring pipeline safety. Aiming at the problem that the small diameter pipeline is difficult to detect, this paper proposes a detection method for the inner wall damage of a small-diameter pipeline based on the TE01 mode microwave and uses the TE01 mode to detect the inner wall damage of the pipeline by the terminal short-circuit reflection method. By analyzing the transition of microwave propagation mode at the defect, based on the Maxwell equation and the field distribution equation of the TE01 mode microwave in the pipe and the pipe wall current equation, the microwave reflection coefficient at the defect is established when the microwave distortion modes at the defect are TE and TM modes.

View Article and Find Full Text PDF

The magnetic tomography method (MTM) is a non-contact external inspection method for detecting metal magnetic memory signals. It has great potential for application in long-distance oil pipeline and subsea pipeline inspection. However, the spatial distribution characteristics and propagation laws of magnetic signals are not yet clear, which makes the MTM passive detection.

View Article and Find Full Text PDF

With the aim of addressing the difficulty of detecting metal surface cracks and corrosion defects in complex environments, we propose a detection method for metal surface cracks and corrosion defects based on TE01-mode microwave. The microwave detection equations of cracks and corrosion defects were established by the Maxwell equations when the TE01 mode was excited by microwaves, and the relationship model between the defect size and the microwave characteristic quantity was established. A finite integral simulation model was established to analyze the influence of defects on the microwave electric field, magnetic field, and tube wall current in the rectangular waveguide, as well as the return loss at the defect; an experimental platform for the detection of metal surface cracks and corrosion defects was built.

View Article and Find Full Text PDF