Publications by authors named "Li-xi Wang"

Certain neonicotinoid metabolites (mNEOs) are causing widespread concern because they are equally or even more toxic than the parent NEOs. Currently, there is limited information on the distribution of mNEOs in soil. Especially, it is unknown that the effects of agricultural factors, such as plastic filming, plowing, irrigation, and fertilization, on mNEOs.

View Article and Find Full Text PDF

Imidacloprid (IMI), a leading neonicotinoid insecticide, is widely used in China. Nevertheless, owing to its high toxicity to pollinators, regulatory scrutiny of its usage has increased in recent years. Despite this, no relevant issues have been announced in China, and its usage continues to rise.

View Article and Find Full Text PDF

Neonicotinoid insecticide (NEO) residues in agricultural soils have concerning and adverse effects on agroecosystems. Previous studies on the effects of farmland type on NEOs are limited to comparing greenhouses with open fields. On the other hand, both NEOs and microplastics (MPs) are commonly found in agricultural fields, but their co-occurrence characteristics under realistic fields have not been reported.

View Article and Find Full Text PDF

Enforcing balanced electron-hole injection into the emitter layer of quantum-dot light-emitting diodes (QLEDs) remains key to maximizing the quantum efficiency over a wide current density range. This was previously thought not possible for quantum dot (QD) emitters because of their very deep energy bands. Here, we show using Mesolight® blue-emitting CdZnSeS/ZnS QDs as a model that its valence levels are in fact considerably shallower than the corresponding band maximum of the bulk semiconductor, which makes the ideal double-type-I injection/confinement heterostructure accessible using a variety of polymer organic semiconductors as transport and injection layers.

View Article and Find Full Text PDF

Polyphenol oxidases (PPOs) as inducible defense proteins, contribute to tea (Camellia sinensis) resistance against tea geometrid larvae (Ectropis grisescens), and this resistance has been associated with the jasmonic acid (JA) signaling by testing geometrid performance in our previous work. However, the regulation of PPO-based defense by JA and other hormone signaling underlying these defense responses is poorly understood. Here, we investigated the role of phytohormones in regulating the PPO response to tea geometrids.

View Article and Find Full Text PDF
Article Synopsis
  • Polyphenol oxidases (PPOs) are crucial for tea plants' defense against herbivores like the tea geometrid Ectropis obliqua, with increases in PPO activity linked to jasmonic acid (JA) treatment.
  • Caterpillars of Ectropis obliqua showed slower growth and reduced weight gain on JA-treated tea plants compared to control plants, indicating a dose-dependent relationship between JA and caterpillar development.
  • Ectropis obliqua caterpillars can inhibit the production of PPOs in response to mechanical wounding and herbivore regurgitant, suggesting they have adapted to overcome the tea plants' defense mechanisms.
View Article and Find Full Text PDF

Series of Eu3+ doped layered perovskite structure M2TiO4: Eu3+ (M = Ca, Sr, Ba) red phosphors were prepared by the high-temperature solid state reaction method. Their phase compositions and photoluminescence properties were investigated by XRD, UV-Vis DRS and fluorescence spectra The results indicated that pure Sr2 TiO4 and Ba2 TiO4 powers could be prepared under 1 100 degrees C for 2 hours, but Ca2 TiO4 powers could not be synthesized even raising the calcination temperature and lengthening the calcination time. Ba2TiO4: Eu3+ phosphor emitted 594 nm (5D0 --> 7F1) and 615 nm (5D0 --> 7F2) orange-red light under the excitation of 395 nm.

View Article and Find Full Text PDF

Background: Glutathione S-transferases (GSTs) have received considerable attention in insects for their roles in insecticide resistance. Laodelphax striatellus (Fallén) is a serious rice pest. L.

View Article and Find Full Text PDF

Y2O3 powders doped with rare-earth ions were synthesized by sol-gel combustion synthesis. Effects of different calcinating temperatures, Er+ doping concentration and Yb3+ doping concentration were investigated. It was shown that the single well crystallized Y2O3 powders could be obtained at 800 degrees C; as the calcinating temperature increased, the crystallinity and upconversion luminescence intensity were higher; the particle size was uniform around 1 microm at 900 degrees C; when Er3+ doping concentration was 1 mol%, the green upconversion luminescence intensity reached the maximum, but for red upconversion luminescence, when Er3+ doping concentration was 4 mol%, its luminescence intensity reached the maximum; as the ratio of Yb3+ to Er3+ was 4:1, the green emission intensity reached the maximum, while the red emission intensity was always increasing as Yb3+ doping concentration increased.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionuvqgkdscfa7jpma4sd4dt6dpbop44s9p): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once