Publications by authors named "Li-tao Guo"

End-to-end RNA-sequencing methods that capture 5'-sequence content without cumbersome library manipulations are of great interest, particularly for analysis of long RNAs. While template-switching methods have been developed for RNA sequencing by distributive short-read RTs, such as the MMLV RTs used in SMART-Seq methods, they have not been adapted to leverage the power of ultraprocessive RTs, such as those derived from group II introns. To facilitate this transition, we dissected the individual processes that guide the enzymatic specificity and efficiency of the multistep template-switching reaction carried out by RTs, in this case, by MarathonRT.

View Article and Find Full Text PDF

RNA molecules play important roles in numerous normal cellular processes and disease states, from protein coding to gene regulation. RT-PCR, applying the power of polymerase chain reaction (PCR) to RNA by coupling reverse transcription with PCR, is one of the most important techniques to characterize RNA transcripts and monitor gene expression. The ability to analyze full-length RNA transcripts and detect their expression is critical to decipher their biological functions.

View Article and Find Full Text PDF

Although next-generation sequencing (NGS) technologies have revolutionized our ability to sequence DNA with high-throughput, the chain termination-based Sanger sequencing method remains a widely used approach for DNA sequence analysis due to its simplicity, low cost and high accuracy. In particular, high accuracy makes Sanger sequencing the "gold standard" for sequence validation in basic research and clinical applications. During the early days of Sanger sequencing development, reverse transcriptase (RT)-based RNA sequencing was also explored and showed great promise, but the approach did not acquire popularity over time due to the limited processivity and low template unwinding capability of Avian Myeloblastosis Virus (AMV) RT, and other RT enzymes available at the time.

View Article and Find Full Text PDF

The pyrrolysyl-tRNA synthetase (PylRS) facilitates the cotranslational installation of the 22nd amino acid pyrrolysine. Owing to its tolerance for diverse amino acid substrates, and its orthogonality in multiple organisms, PylRS has emerged as a major route to install noncanonical amino acids into proteins in living cells. Recently, a novel class of PylRS enzymes was identified in a subset of methanogenic archaea.

View Article and Find Full Text PDF

Although reverse-transcriptase (RT) enzymes are critical reagents for research and biotechnology, their mechanical properties are not well understood. In particular, we know little about their relative speed and response to structural obstacles in the template. Commercial retroviral RTs stop at many positions along mixed sequence templates, resulting in truncated cDNA products that complicate downstream analysis.

View Article and Find Full Text PDF

Background: This study aimed to identify factors associated with antibiotic-associated diarrhea (AAD) in patients in the department of intensive care medicine who received antibiotic monotherapy in order to reduce the incidence of AAD and improve rational use of antibiotics in these patients.

Aim: To report the incidence of AAD and the factors associated with AAD in patients receiving antibiotic monotherapy.

Methods: The study used a single-center retrospective design.

View Article and Find Full Text PDF

Reverse transcriptase (RT) enzymes are indispensable tools for interrogating diverse aspects of RNA metabolism and transcriptome composition. Due to the growing interest in sequence and structural complexity of long RNA molecules, processive RT enzymes are now required for preserving linkage and information content in mixed populations of transcripts, and the low-processivity RT enzymes that are commercially available cannot meet this need. MarathonRT is encoded within a eubacterial group II intron, and it has been shown to efficiently copy highly structured long RNA molecules in a single pass.

View Article and Find Full Text PDF

Pyrrolysyl-tRNA synthetase (PylRS) is a major tool in genetic code expansion using noncanonical amino acids, yet its structure and function are not completely understood. Here we describe the crystal structure of the previously uncharacterized essential N-terminal domain of this unique enzyme in complex with tRNA. This structure explains why PylRS remains orthogonal in a broad range of organisms, from bacteria to humans.

View Article and Find Full Text PDF

Directed evolution of orthogonal aminoacyl-tRNA synthetases (AARSs) enables site-specific installation of noncanonical amino acids (ncAAs) into proteins. Traditional evolution techniques typically produce AARSs with greatly reduced activity and selectivity compared to their wild-type counterparts. We designed phage-assisted continuous evolution (PACE) selections to rapidly produce highly active and selective orthogonal AARSs through hundreds of generations of evolution.

View Article and Find Full Text PDF

Bemisia tabaci has developed a high level of resistance to thiamethoxam, a second generation neonicotinoid insecticide that has been widely used to control this pest. In this study, we investigated whether hydroxyacid-oxoacid transhydrogenase (HOT) is involved in resistance to the neonicotinoid insecticide thiamethoxam in the whitefly. We cloned the full-length gene that encodes HOT in B.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease characterized by inflammatory cell infiltration, synovial inflammation, and cartilage destruction. Proliferative fibroblast-like synoviocytes (FLS) play crucial roles in both propagation of inflammation and joint damage because of their production of great amount of proinflammatory cytokines and proteolytic enzymes. In this study, we investigate the role of TRAF-interacting protein (TRIP) in regulating inflammatory process in RA-FLS.

View Article and Find Full Text PDF

Objectives: This meta-analysis summarized the risks that reintubation impose on ventilator-associated pneumonia (VAP) and mortality.

Background: Extubation failure increases the probability of poor clinical outcomes pertaining to mechanical ventilation.

Methods: Literature published during a 15-year period was retrieved from PubMed, Web of Knowledge databases, the Embase (Excerpa Medica database), and the Cochrane Library.

View Article and Find Full Text PDF

Genetically encoded non-canonical amino acids are powerful tools of protein research and engineering; in particular they allow substitution of individual chemical groups or atoms in a protein of interest. One such amino acid is the tryptophan (Trp) analog 3-benzothienyl-l-alanine (Bta) with an imino-to-sulfur substitution in the five-membered ring. Unlike Trp, Bta is not capable of forming a hydrogen bond, but preserves other properties of a Trp residue.

View Article and Find Full Text PDF

Expansion of the genetic code through engineering the translation machinery has greatly increased the chemical repertoire of the proteome. This has been accomplished mainly by read-through of UAG or UGA stop codons by the noncanonical aminoacyl-tRNA of choice. While stop codon read-through involves competition with the translation release factors, sense codon reassignment entails competition with a large pool of endogenous tRNAs.

View Article and Find Full Text PDF

Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA(Pyl) have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate N(ε)-acetyl-Lys (AcK) onto tRNA(Pyl).

View Article and Find Full Text PDF

Pyrrolysyl-tRNA synthetase (PylRS) is a class IIc aminoacyl-tRNA synthetase that is related to phenylalanyl-tRNA synthetase (PheRS). Genetic selection provided PylRS variants with a broad range of specificity for diverse non-canonical amino acids (ncAAs). One variant is a specific phenylalanine-incorporating enzyme.

View Article and Find Full Text PDF

Leifsonia aquatica is an aquatic bacterium that is typically found in environmental water habitats. Infections due to L. aquatica are rare and commonly catheter associated in immunocompromised patients.

View Article and Find Full Text PDF

Protein mistranslation causes growth arrest in bacteria, mitochondrial dysfunction in yeast, and neurodegeneration in mammals. It remains poorly understood how mistranslated proteins cause such cellular defects. Here we demonstrate that streptomycin, a bactericidal aminoglycoside that increases ribosomal mistranslation, induces transient protein aggregation in wild-type Escherichia coli.

View Article and Find Full Text PDF

Protein biosynthesis requires aminoacyl-transfer RNA (tRNA) synthetases to provide aminoacyl-tRNA substrates for the ribosome. Most bacteria and all archaea lack a glutaminyl-tRNA synthetase (GlnRS); instead, Gln-tRNA(Gln) is produced via an indirect pathway: a glutamyl-tRNA synthetase (GluRS) first attaches glutamate (Glu) to tRNA(Gln), and an amidotransferase converts Glu-tRNA(Gln) to Gln-tRNA(Gln). The human pathogen Helicobacter pylori encodes two GluRS enzymes, with GluRS2 specifically aminoacylating Glu onto tRNA(Gln).

View Article and Find Full Text PDF

Posttranslational modifications play a crucial role in modulating protein structure and function. Genetic incorporation of unnatural amino acids into a specific site of a protein facilitates the systematic study of protein modifications including acetylation. We here report the directed evolution of pyrrolysyl-tRNA synthetase (PylRS) from Methanosarcina mazei to create N-acetyl lysyl-tRNA synthetases (AcKRSs) using a new selection system based on the killing activity of the toxic ccdB gene product.

View Article and Find Full Text PDF

O-Phosphoserine (Sep), the most abundant phosphoamino acid in the eukaryotic phosphoproteome, is not encoded in the genetic code, but synthesized posttranslationally. Here, we present an engineered system for specific cotranslational Sep incorporation (directed by UAG) into any desired position in a protein by an Escherichia coli strain that harbors a Sep-accepting transfer RNA (tRNA(Sep)), its cognate Sep-tRNA synthetase (SepRS), and an engineered EF-Tu (EF-Sep). Expanding the genetic code rested on reengineering EF-Tu to relax its quality-control function and permit Sep-tRNA(Sep) binding.

View Article and Find Full Text PDF

For most aminoacyl-tRNA synthetases (aaRS), their cognate tRNA is not obligatory to catalyze amino acid activation, with the exception of four class I (aaRS): arginyl-tRNA synthetase, glutamyl-tRNA synthetase, glutaminyl-tRNA synthetase and class I lysyl-tRNA synthetase. Furthermore, for arginyl-, glutamyl- and glutaminyl-tRNA synthetase, the integrated 3' end of the tRNA is necessary to activate the ATP-PPi exchange reaction. Tryptophanyl-tRNA synthetase is a class I aaRS that catalyzes tryptophan activation in the absence of its cognate tRNA.

View Article and Find Full Text PDF