Publications by authors named "Li-na Shen"

In recent years, quinolone antibiotics (QNs), which easily bioaccumulate in aquatic organisms, have been widely detected in lake ecosystems, and the bioaccumulation and trophic transfer behavior are obviously spatiotemporally different. In this study, the bioaccumulation and trophic transfer behavior of fourteen QNs in nine dominant fish species were studied, the correlation with environmental factors was analyzed, and the health risk of QNs was evaluated in Baiyangdian Lake. The results showed that the mass concentrations of ∑QNs in water varied from 0.

View Article and Find Full Text PDF

Background: Microdialysis is promising technique for dynamic microbiochemical sampling from tissues. However, the application of typical aqueous perfusates to liposoluble substances is limited. In this study, a novel microemulsion (ME)-based isotonic perfusate (RS-ME) was prepared to improve the recovery of liposoluble components using microdialysis probes.

View Article and Find Full Text PDF

In this study, solid lipid nanoparticles were formulated for transdermal delivery of aconitine to improve its safety and permeability. Aconitine-loaded solid lipid nanoparticles were formulated as an oil-in-water microemulsion. Drug encapsulation efficiencies for these formulations were higher than 85%, and correlated positively with levels of surfactant and oil matrix.

View Article and Find Full Text PDF

The aims of the present study were to investigate the skin permeation and cellular uptake of a microemulsion (ME) containing total flavone of rhizoma arisaematis (TFRA), and to evaluate its effects on skin structure. Pseudo-ternary phase diagrams were constructed to evaluate ME regions with various surfactants and cosurfactants. Eight formulations of oil-in-water MEs were selected as vehicles, and in vitro skin-permeation experiments were performed to optimize the ME formulation and to evaluate its permeability, in comparison to that of an aqueous suspension.

View Article and Find Full Text PDF

This study investigated the effect of skin viability on its permeability to psoralen delivered by ethosomes, as compared with liposomes. With decreasing skin viability, the amount of liposome-delivered psoralen that penetrated through the skin increased, whereas skin deposition of psoralen from both ethosomes and liposomes reduced. Psoralen delivery to human-immortalized epidermal cells was more effective using liposomes, whereas delivery to human embryonic skin fibroblast cells was more effective when ethosomes were used.

View Article and Find Full Text PDF

Recent reports have indicated that psoriasis may be caused by malfunctioning dermal immune cells, and psoralen ultraviolet A (PUVA) is an effective treatment for this chronic disease. However, conventional topical formulations achieve poor drug delivery across patches of psoriasis to their target sites. The present study describes the development of a novel psoralen transdermal delivery system employing ethosomes, flexible vesicles that can penetrate the stratum corneum and target deep skin layers.

View Article and Find Full Text PDF

This study aimed to improve skin permeation and deposition of psoralen by using ethosomes and to investigate real-time drug release in the deep skin in rats. We used a uniform design method to evaluate the effects of different ethosome formulations on entrapment efficiency and drug skin deposition. Using in vitro and in vivo methods, we investigated skin penetration and release from psoralen-loaded ethosomes in comparison with an ethanol tincture.

View Article and Find Full Text PDF

The aim of this study was to develop and evaluate a novel topical delivery system for apigenin by using ethosomes. An optimal apigenin-loaded ethosome formulation was identified by means of uniform design experiments. Skin deposition and transdermal flux of apigenin loaded in ethosomes, liposomes, and deformable liposomes were compared in vitro and in vivo.

View Article and Find Full Text PDF

In this study, we prepared solid lipid nanoparticles (TV-SLNs) loaded with toad venom extract and investigated their anti-tumor effects in vitro in HeLa and SKOV-3 cells. TV-SLNs were prepared using a cold homogenization technique, and the formulation was optimized by central composite design and response surface methods. The anti-tumor activities of TV-SLNs were evaluated by analyzing cell division and cell cycle distribution by using the MTT assay and flow cytometry.

View Article and Find Full Text PDF

Objective: To study the expression of A-kinase anchor protein 95 (AKAP95), cyclin E(2), and connexin 43 (Cx43) in lung cancer tissue, the clinical significance of their expression, and the expression correlation among the three proteins.

Methods: Fifty-one samples of lung cancer tissue were examined by immunohistochemistry to measure the expression of AKAP95, cyclin E2, and Cx43.

Results: The positive rate of AKAP95 expression in lung cancer tissue was significantly higher than that in paracancerous tissue (82.

View Article and Find Full Text PDF

Based on methods for groundwater vulnerability assessment not involving in contamination source elements, and lack of the systemic and effective techniques and parameter system on groundwater pollution risk mapping in present, through analyzing the structure of groundwater system and characteristics of contaminant sources, and coupling groundwater intrinsic vulnerability with contaminant sources, the integrated multi-index models were developed to evaluate the risk sources of groundwater contaminant and form the groundwater pollution risk mapping in this paper. The models had been used to a large-scale karst groundwater source of northern China as a case study. The results indicated that vulnerability assessment overlaid risk pollution sources of groundwater could effectively confirm the high risk regions of groundwater pollution, and the methods might provide necessary support for the supervision of groundwater pollution.

View Article and Find Full Text PDF