Objective: This study was conducted to investigate the regulation of endoplasmic reticulum stress on Nrf2 signaling pathway in the kidneys of rats.
Methods: Rats were divided into twelve groups of six animals each. Some groups were pre-administered with bacitracin or tauroursodeoxycholic acid (TUDCA), and all of them were treated with 5-20 μmol/kg cadmium (Cd) for 48 h.
Peripheral nerve injury induces increased expression of thrombospondin-4 (TSP4) in spinal cord and dorsal root ganglia that contributes to neuropathic pain states through unknown mechanisms. Here, we test the hypothesis that TSP4 activates its receptor, the voltage-gated calcium channel Cavα2δ1 subunit (Cavα2δ1), on sensory afferent terminals in dorsal spinal cord to promote excitatory synaptogenesis and central sensitization that contribute to neuropathic pain states. We show that there is a direct molecular interaction between TSP4 and Cavα2δ1 in the spinal cord in vivo and that TSP4/Cavα2δ1-dependent processes lead to increased behavioral sensitivities to stimuli.
View Article and Find Full Text PDFTrigeminal nerves collecting sensory information from the orofacial area synapse on second-order neurons in the dorsal horn of subnucleus caudalis and cervical C1/C2 spinal cord (Vc/C2, or trigeminocervical complex), which is critical for sensory information processing. Injury to the trigeminal nerves may cause maladaptive changes in synaptic connectivity that plays an important role in chronic pain development. Here we examined whether injury to the infraorbital nerve, a branch of the trigeminal nerves, led to synaptic ultrastructural changes when the injured animals have developed neuropathic pain states.
View Article and Find Full Text PDFTo investigate a potential mechanism underlying trigeminal nerve injury-induced orofacial hypersensitivity, we used a rat model of chronic constriction injury to the infraorbital nerve (CCI-ION) to study whether CCI-ION caused calcium channel α2δ1 (Cavα2δ1) protein dysregulation in trigeminal ganglia and associated spinal subnucleus caudalis and C1/C2 cervical dorsal spinal cord (Vc/C2). Furthermore, we studied whether this neuroplasticity contributed to spinal neuron sensitization and neuropathic pain states. CCI-ION caused orofacial hypersensitivity that correlated with Cavα2δ1 up-regulation in trigeminal ganglion neurons and Vc/C2.
View Article and Find Full Text PDFBackground: Current pain management is limited, in particular, with regard to chronic pain. In an attempt to discover novel analgesics, we combined the approach developed to characterize traditional Chinese medicine (TCM), as part of the "herbalome" project, with the reverse pharmacology approach aimed at discovering new endogenous transmitters and hormones.
Results: In a plant used for centuries for its analgesic properties, we identify a compound, dehydrocorybulbine (DHCB), that is effective at alleviating thermally induced acute pain.
Neuropathic pain is a common cause of pain after nerve injury, but its molecular basis is poorly understood. In a post-gene chip microarray effort to identify new target genes contributing to neuropathic pain development, we report here the characterization of a novel neuropathic pain contributor, thrombospondin-4 (TSP4), using a neuropathic pain model of spinal nerve ligation injury. TSP4 is mainly expressed in astrocytes and significantly upregulated in the injury side of dorsal spinal cord that correlates with the development of neuropathic pain states.
View Article and Find Full Text PDFThe spinal nerve ligation model of neuropathic pain in rats, as originally described by Kim and Chung (Pain 50:355-363, 1992), provides an excellent venue to study the antinociception and modulation effects of pulsed radiofrequency (PRF) current in pain processing. We describe the procedure of application of PRF current near the exposed L5 dorsal root ganglion (DRG) in rats with L5 spinal nerve ligation injury-induced behavioral hypersensitivity. This method employs the direct visualization of the L5 DRG, allowing for confirmation of the location of the PRF probe adjacent to the DRG.
View Article and Find Full Text PDFBackground: Application of pulsed radiofrequency (PRF) currents to the dorsal root ganglia (DRG) has been reported to produce relief from certain pain states without causing thermal ablation. In this study, we examined the direct correlation between PRF application to DRG associated with spinal nerve injury and reversal of injury-induced behavioral hypersensitivity in a rat neuropathic pain model.
Methods: Neuropathic lesioning was performed via left L5 spinal nerve ligation on male adult Sprague-Dawley rats.
Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi
November 2010
Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi
July 2009
Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi
April 2009
To explore cellular changes in sensory neurons after nerve injury and to identify potential target genes contributing to different stages of neuropathic pain development, we used Affymetrix oligo arrays to profile gene expression patterns in L5/6 dorsal root ganglia (DRG) from the neuropathic pain model of left L5/6 spinal nerve ligation at different stages of neuropathic pain development. Our data indicated that nerve injury induced changes in expression of genes with similar biological functions in a temporal specific manner that correlates with particular stages of neuropathic pain development, indicating dynamic neuroplasticity in the DRG in response to peripheral nerve injury and during neuropathic pain development. Data from post-array validation indicated that there was a temporal correlation between injury-induced expression of the glial fibrillary acidic protein (GFAP), a marker for activated astrocytes, and neuropathic pain development.
View Article and Find Full Text PDFMechanisms of chronic pain, including neuropathic pain, are poorly understood. Upregulation of voltage-gated calcium channel (VGCC) alpha2delta1 subunit (Ca(v)alpha2delta1) in sensory neurons and dorsal spinal cord by peripheral nerve injury has been suggested to contribute to neuropathic pain. To investigate the mechanisms without the influence of other injury factors, we have created transgenic mice that constitutively overexpress Ca(v)alpha2delta1 in neuronal tissues.
View Article and Find Full Text PDFSichuan Da Xue Xue Bao Yi Xue Ban
September 2004
Objective: To evaluate the major dietary factors of kidney stones in Bao'an District of Shenzhen City and provide a scientific base for further effective prevention of kidney stones.
Methods: Following the process of stratified cluster random sampling in Bao'an district, a cross-sectional study (July-Aug, 2000) was conducted for collecting the base-line data on kidney stones from a population of permanent residents who were over 15 years old, exclusive of those who had had kidney stones or could not correctly respond to the questionnaire review. Then, a follow-up survey (July-Sept, 2002) for incident kidney stone cases was carried out among those residents.