In the quest to build general-purpose photonic quantum computers, fusion-based quantum computation has risen to prominence as a promising strategy. This model allows a ballistic construction of large cluster states which are universal for quantum computation, in a scalable and loss-tolerant way without feed forward, by fusing many small n-photon entangled resource states. However, a key obstacle to this architecture lies in efficiently generating the required essential resource states on photonic chips.
View Article and Find Full Text PDFWe report new Gaussian boson sampling experiments with pseudo-photon-number-resolving detection, which register up to 255 photon-click events. We consider partial photon distinguishability and develop a more complete model for the characterization of the noisy Gaussian boson sampling. In the quantum computational advantage regime, we use Bayesian tests and correlation function analysis to validate the samples against all current classical spoofing mockups.
View Article and Find Full Text PDFPhys Rev Lett
February 2023
Quantum self-testing is a device-independent way to certify quantum states and measurements using only the input-output statistics, with minimal assumptions about the quantum devices. Because of the high demand on tolerable noise, however, experimental self-testing was limited to two-photon systems. Here, we demonstrate the first robust self-testing for multiphoton genuinely entangled quantum states.
View Article and Find Full Text PDFWe report phase-programmable Gaussian boson sampling (GBS) which produces up to 113 photon detection events out of a 144-mode photonic circuit. A new high-brightness and scalable quantum light source is developed, exploring the idea of stimulated emission of squeezed photons, which has simultaneously near-unity purity and efficiency. This GBS is programmable by tuning the phase of the input squeezed states.
View Article and Find Full Text PDFQuantum no-cloning, the impossibility of perfectly cloning an arbitrary unknown quantum state, is one of the most fundamental limitations due to the laws of quantum mechanics, which underpin the physical security of quantum key distribution. Quantum physics does allow, however, approximate cloning with either imperfect state fidelity and/or probabilistic success. Whereas approximate quantum cloning of single-particle states has been tested previously, experimental cloning of quantum entanglement-a highly nonclassical correlation-remained unexplored.
View Article and Find Full Text PDFQuantum computers promise to perform certain tasks that are believed to be intractable to classical computers. Boson sampling is such a task and is considered a strong candidate to demonstrate the quantum computational advantage. We performed Gaussian boson sampling by sending 50 indistinguishable single-mode squeezed states into a 100-mode ultralow-loss interferometer with full connectivity and random matrix-the whole optical setup is phase-locked-and sampling the output using 100 high-efficiency single-photon detectors.
View Article and Find Full Text PDFDiabetic retinopathy (DR) is the leading cause of blindness in working-age adults. Vascular pericyte degeneration is the predominant clinical manifestation of DR, yet the mechanism governing pericyte degeneration is poorly understood. Circular RNAs (circRNAs) play important roles in multiple biological processes and disease progression.
View Article and Find Full Text PDFHerbal and dietary supplements (HDS)-induced liver injury has been a great concern all over the world. Polygonum multiflorum Thunb., a well-known Chinese herbal medicine, is recently drawn increasing attention because of its hepatotoxicity.
View Article and Find Full Text PDFWe demonstrate fourth-order quantum beat between sunlight and single photons from a quantum dot. With a fast time-resolved detection system, we observed high-visibility quantum beat between the independent photons of different frequencies from the two astronomically separated light sources. The temporal dynamics of the beat oscillation indicate the coherent behavior of the interfering photons, and the raw visibility of two-photon interference shows violation of the classical limit with a frequency mismatch of three-times the line width.
View Article and Find Full Text PDFWe report an experiment to test quantum interference, entanglement, and nonlocality using two dissimilar photon sources, the Sun and a semiconductor quantum dot on the Earth, which are separated by ∼150 million kilometers. By making the otherwise vastly distinct photons indistinguishable in all degrees of freedom, we observe time-resolved two-photon quantum interference with a raw visibility of 0.796(17), well above the 0.
View Article and Find Full Text PDFQuantum teleportation allows a "disembodied" transmission of unknown quantum states between distant quantum systems. Yet, all teleportation experiments to date were limited to a two-dimensional subspace of quantized multiple levels of the quantum systems. Here, we propose a scheme for teleportation of arbitrarily high-dimensional photonic quantum states and demonstrate an example of teleporting a qutrit.
View Article and Find Full Text PDFGaussian Boson sampling (GBS) provides a highly efficient approach to make use of squeezed states from parametric down-conversion to solve a classically hard-to-solve sampling problem. The GBS protocol not only significantly enhances the photon generation probability, compared to standard Boson sampling with single photon Fock states, but also links to potential applications such as dense subgraph problems and molecular vibronic spectra. Here, we report the first experimental demonstration of GBS using squeezed-state sources with simultaneously high photon indistinguishability and collection efficiency.
View Article and Find Full Text PDFEntangled-photon sources with simultaneously near-unity heralding efficiency and indistinguishability are the fundamental elements for scalable photonic quantum technologies. We design and realize a degenerate telecommunication wavelength entangled-photon source from an ultrafast pulsed laser pumped spontaneous parametric down-conversion (SPDC), which shows simultaneously 97% heralding efficiency and 96% indistinguishability between independent single photons without narrow-band filtering. Such a beamlike and frequency-uncorrelated SPDC source allows generation of the first 12-photon genuine entanglement with a state fidelity of 0.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
December 2017
Purpose: To reveal the expression profile and clinical significance of circular RNAs (circRNAs) in diabetic retinopathy (DR).
Methods: Circular RNA microarrays were performed to identify DR-related circRNAs. Gene ontology (GO) enrichment and KEGG analysis was performed to determine the biologic modules and signaling pathway.
Vascular dysfunction is a hallmark of ischemic, cancer, and inflammatory diseases, contributing to disease progression. Circular RNAs (circRNAs) are endogenous non-coding RNAs, which have been reported to be abnormally expressed in many human diseases. In this study, we used retinal vasculature to determine the role of circular RNA in vascular dysfunction.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2017
Retinal microvascular abnormality is an important pathological feature of diabetic retinopathy. Herein, we report the role of lncRNA-RNCR3 in diabetes mellitus-induced retinal microvascular abnormalities. We show that RNCR3 is significantly up-regulated upon high glucose stress in vivo and in vitro.
View Article and Find Full Text PDFBackground/aims: Advanced glycation end products (AGEs) could elicit oxidative stress, trigger and aggravate endothelium damage in several ischemic retinopathies including diabetic retinopathy (DR). The leaves of Eucommia ulmoides O., also referred to as Tu-chung or Du-zhong, have been used for the treatment of hypertension and diabetes, showing great antioxidant activity and anti-glycation activity.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2016
Retinal reactive gliosis is an important pathological feature of diabetic retinopathy. Identifying the underlying mechanisms causing reactive gliosis will be important for developing new therapeutic strategies for treating diabetic retinopathy. Herein, we show that long noncoding RNA-RNCR3 knockdown significantly inhibits retinal reactive gliosis.
View Article and Find Full Text PDFRetinal ganglion cell (RGC) injury is one of the important pathological features of diabetes-induced retinal neurodegeneration. Increasing attention has been paid to find strategies for protecting against RGC injury. Long noncoding RNAs (lncRNAs) have emerged as the key regulators of many cell functions.
View Article and Find Full Text PDFThe aim of the present study was to investigate the effects of ketamine, imipramine, and ketamine plus imipramine on chronic depression-like behaviors of Wistar Kyoto (WKY) rats and underlying mechanism. Six-week-old Wistar rats were used as normal control. WKY rats, depression model animal, were injected intraperitoneally with ketamine (1 week, replaced with saline in 2(nd) week), imipramine (2 weeks), or ketamine in combination with imipramine.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2016
Microvascular dysfunction is an important characteristic of diabetic retinopathy. Long non-coding RNAs (lncRNAs) play important roles in diverse biological processes. In this study, we investigated the role of lncRNA-MEG3 in diabetes-related microvascular dysfunction.
View Article and Find Full Text PDFGlaucoma is a progressive neurodegenerative disease, characterized by retinal ganglion cells (RGCs) and axon degeneration. The development of neuroprotective drug is required for improving the efficiency of glaucoma treatment. Eucommia ulmoides Oliv.
View Article and Find Full Text PDFNeuropathic pain is a common and severely disabling state that affects millions of people worldwide. The P2X3 receptor plays a crucial role in facilitating pain transmission. Intermedin (IMD), which is also known as adrenomedullin 2 (AMD2) is a newly discovered hormone that is a member of the calcitonin/calcitonin gene-related peptide family.
View Article and Find Full Text PDF