Accurate and large-scale assessment of volumetric water content (VWC) plays a critical role in mining waste monitoring to mitigate potential geotechnical and environmental risks. In recent years, time-lapse electrical resistivity tomography (TL-ERT) has emerged as a promising monitoring approach that can be used in combination with traditional invasive and point-measurements techniques to estimate VWC in mine tailings. Moreover, the bulk electrical conductivity (EC) imaged using TL-ERT can be converted into VWC in the field using petrophysical relationships calibrated in the laboratory.
View Article and Find Full Text PDFMining operations generate large amounts of wastes which are usually stored into large-scale storage facilities which pose major environmental concerns and must be properly monitored to manage the risk of catastrophic failures and also to control the generation of contaminated mine drainage. In this context, non-invasive monitoring techniques such as time-lapse electrical resistivity tomography (TL-ERT) are promising since they provide large-scale subsurface information that complements surface observations (walkover, aerial photogrammetry or remote sensing) and traditional monitoring tools, which often sample a tiny proportion of the mining waste storage facilities. The purposes of this review are as follows: (i) to understand the current state of research on TL-ERT for various applications; (ii) to create a reference library for future research on TL-ERT and geoelectrical monitoring mining waste; and (iii) to identify promising areas of development and future research needs on this issue according to our experience.
View Article and Find Full Text PDFDiabetic Encephalopathy (DE) is one of the complications of diabetes mellitus (DM) in the central nervous system. Up to now, the mechanisms of DE are not fully discussed by the field. Autophagy is an intracellular degradation pathway crucial to maintain cellular homeostasis by clearing damaged organelles, pathogens, and unwanted protein aggregates.
View Article and Find Full Text PDFLong noncoding RNAs (lncRNAs) are RNA molecules longer than 200 nucleotides that do not typically code for a protein. lncRNAs have regulatory roles in many physiological processes, and their dysregulation can contribute to cancer, cardiovascular and neurodegenerative diseases, as well as the onset of autoimmune diseases, including systemic lupus erythematosus and rheumatoid arthritis. However, lncRNA expression changes in autoimmune hepatitis (AIH), a form of inflammation induced by immunological tolerance disorders, are poorly understood.
View Article and Find Full Text PDFForward modeling of geophysical electromagnetic fields over large three-dimensional volumes is a heavy computational task that demands effective accelerating strategies. As a solution to this computational challenge, a hybrid parallel computing algorithm with multiple meshes has been previously proposed for 3D forward modeling of time-domain electromagnetic (TEM) fields by Liu et al. (2019).
View Article and Find Full Text PDFObjective: To establish a rapid identification method for fruit drugs of Rosaceae, according to the influence of Chinese traditional medicine on the electrochemical oscillation reaction.
Methods: The experiments were carried out in H2SO4-Ce (SO4)2-CH2 (COOH)2-KBrO3 electrochemical oscillation system. The graphs and characteristic parameters which were formed by the disturbance of Rosaceous fruit drugs to the electrochemical oscillation reaction were studied.
Background: Nasopharyngeal carcinoma (NPC) is common among Southern Chinese and the main histology is the undifferentiated carcinoma associated with Epstein-Barr virus (EBV) infection. p63 is a recently proved member of the p53 family based on the structural similarity to p53, but its function in NPC is still unknown. This study was aimed to investigate the association between p63 and NPC.
View Article and Find Full Text PDF