Publications by authors named "Li-Yi Zhou"

The primary objective of this study was to evaluate the safety of 810 and 1064 nm laser treatment on dental implants. Peri-implantitis is a challenge for clinicians and researchers. A pig mandible model was used to evaluate temperature increases during laser irradiation.

View Article and Find Full Text PDF

Bisphenol S (BPS) is an environmental endocrine disruptor widely used in industrial production. BPS induces oxidative stress and exhibits male reproductive toxicity in mice, but the mechanisms by which BPS impairs steroid hormone synthesis are not fully understood. Nuclear factor erythroid 2-related factor 2(Nrf2)/HO-1 signaling is a key pathway in improving cellular antioxidant defense capacities.

View Article and Find Full Text PDF

Bisphenol S (BPS), the most common substitute for bisphenol A in manufacturing, is associated with neurotoxicity, but its molecular mechanisms are unclear. Here, we studied the role of the BDNF-TrkB-CREB (brain-derived neurotrophic factor-tropomyosin-related kinase B-CAMP response element-binding protein) signalling pathway in bisphenol S-induced neurotoxicity via methylation regulation in male C57BL/6 mice. The mice were treated with sesame oil or 2, 20 and 200 mg/kg body weight BPS for 28 consecutive days, and the hippocampus was extracted.

View Article and Find Full Text PDF

Fourteen new geranyl phenyl ethers (1-14) along with three known compounds (15-17) were isolated from Illicium micranthum, and their structures were elucidated by comprehensive spectroscopic methods. Illimicranins A-H (1-8) were characterized as geranyl vanillin ethers, while 9 and 10 were dimethyl acetal derivatives. Illimicranins I and J (11 and 12) were rare geranyl isoeugenol ethers.

View Article and Find Full Text PDF

Objective To investigate the oral health status and awareness of urban children in Lhasa,aiming to provide a data basis for the prevention and treatment of children's caries and the promotion of oral health education. Methods A total of 504 Tibetan students were selected by cluster sampling from 2 primary schools in Chengguan District of Lhasa.All the participants were required to take oral health examination and complete a questionnaire about oral health awareness and behavior.

View Article and Find Full Text PDF

The application of artificial intelligence in medicine has gradually received attention along with its development. Many studies have shown that machine learning has a wide range of applications in stomatology, especially in the clinical diagnosis and treatment of maxillofacial cysts and tumors. This article reviews the application of machine learning in maxillofacial cyst and tumor to provide a new method for the diagnosis of oral and maxillofacial diseases.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) is a very important third endogenously generated gaseous signaling molecule and plays a key role in physiological and pathological regulation processes of living biosystems. Although a lot of HS fluorescent probes have been reported, the relationship between the physiology and pathology of HS in inflamed tissues remains unclear. Herein, by adopting a donor-π-acceptor (D-π-A)-structured naphthalimide derivative as the two-photon (TP) fluorophore and a 4-dinitrobenzene-ether (DNB) with a strong intramolecular charge transfer (ICT) effect as the recognition moiety, we reported a novel TP bioimaging probe NP-HS for HS with improved sensitivity.

View Article and Find Full Text PDF

Being the second most common type of primary bone malignancy in children and adolescents, Ewing Sarcoma (ES) encounters the dilemma of low survival rate with a lack of effective treatments. As an emerging approach to combat cancer, RNA therapeutics may expand the range of druggable targets. Since the genome-derived oncolytic microRNA-34a (miR-34a) is down-regulated in ES, restoration of miR-34a-5p expression or function represents a new therapeutic strategy which is, however, limited to the use of chemically-engineered miRNA mimics.

View Article and Find Full Text PDF

Background: The three-dimensional (3D) structure of chromatins plays significant roles during cell differentiation and development. Hi-C and other 3C-based technologies allow us to look deep into the chromatin architectures. Many studies have suggested that topologically associating domains (TAD), as the structure and functional unit, are conserved across different organs.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) may regulate diverse biological processes and play an important role in cancer. And MiRNAs have been proposed as a useful tool for lung cancer diagnosis and therapeutics in cancer. The purpose of the present study was to investigate the association among the expression level of mature miR-200b-5p in peripheral blood and the risk of lung cancer and clinic pathological characteristics.

View Article and Find Full Text PDF

Contamination of water by meat production is an important and extensive environmental problem and even threat to human health. Biodegradation is a major mechanism which removes the pollutants from the environment. Therefore, the present study aimed to isolate and characterize a COD degrading bacteria which can effectively degrade slaughter wastewater.

View Article and Find Full Text PDF

How to improve the prediction accuracy of RNA secondary structure is currently a hot topic. The existing prediction methods for a single sequence do not fully consider the folding diversity which may occur among RNAs with different functions or sources. This paper explores the relationship between folding diversity and prediction accuracy, and puts forward a new method to improve the prediction accuracy of RNA secondary structure.

View Article and Find Full Text PDF

The new Ag2CO3/CA-AA-amidphos complexes have been demonstrated as highly efficient multifunctional catalysts in the asymmetric 1,3-dipolar cycloaddition of azomethine ylides. Under optimal conditions, highly functionalized endo-4 pyrrolidines were obtained with excellent yields (up to 99% yield) and enantioselectivities (up to 96% ee).

View Article and Find Full Text PDF

Pyrene excimer possesses a large Stokes shift and long fluorescence lifetime and has been widely applied in developing time-resolved biosensing systems to solve the autofluorescence interference problems in biological samples. However, only a few of pyrene excimer-based small molecular probes have been reported so far. Ratiometric probes, on the other hand, can eliminate interferences from environmental factors such as instrumental efficiency and environmental conditions by a built-in correction of the dual emission bands but are ineffective for endogenous autofluorescence in biosystems.

View Article and Find Full Text PDF

Noble metals, especially gold, have been widely used in plasmon resonance applications. Although silver has a larger optical cross section and lower cost than gold, it has attracted much less attention because of its easy corrosion, thereby degrading plasmonic signals and limiting its applications. To circumvent this problem, we report the facile synthesis of superstable AgCu@graphene (ACG) nanoparticles (NPs).

View Article and Find Full Text PDF

Intracellular pH plays a pivotal role in various biological processes. In eukaryotic cells, lysosomes contain numerous enzymes and proteins exhibiting a variety of activities and functions at acidic pH (4.5-5.

View Article and Find Full Text PDF

A novel coumarin-based fluorescent probe, P-CM, for quantitative detection of nitroxyl (HNO) was developed. P-CM exhibits a selective response to HNO over other biological reductants and was also applied for quantitative detection of HNO in bovine serum with satisfactory results.

View Article and Find Full Text PDF

Thewater-soluble CP was conjugatedwith a rhodamine spirolactam for the first time to develop a new FRET-based ratiometric fluorescence sensing platform(CP 1) for intracellular metal-ion probing. CP 1 exhibits excellent water-solubility with twowell-resolved emission peaks, which benefit ratiometric intracellular imaging applications.

View Article and Find Full Text PDF

Protein-protein interactions (PPIs) are crucial to most biochemical processes in human beings. Although many human PPIs have been identified by experiments, the number is still limited compared to the available protein sequences of human organisms. Recently, many computational methods have been proposed to facilitate the recognition of novel human PPIs.

View Article and Find Full Text PDF

B-factor from X-ray crystal structure can well measure protein structural flexibility, which plays an important role in different biological processes, such as catalysis, binding and molecular recognition. Understanding the essence of flexibility can be helpful for the further study of the protein function. In this study, we attempted to correlate the flexibility of a residue to its interactions with other residues by representing the protein structure as a residue contact network.

View Article and Find Full Text PDF

Machine learning methods play the very important role in protein secondary structure prediction and other related works. On condition of a certain approach, the prediction qualities mostly depend on the ways of representing protein sequences into numeric features. In this paper, two Support Vector Machine (SVM) multi-classification strategies, "one-against-one" (1-a-1) and "one-against-all" (1-a-a), were used in protein structural classes identification.

View Article and Find Full Text PDF

Hooking up: FeCl(2) catalyzes the efficient cross dehydrogenative arylation of substrates having benzylic C-H bonds (see scheme). High regioselectivity was observed during the cross-coupling between compounds containing aromatic C(sp(2))-H bonds and benzylic C(sp(3))-H bonds. This process is proposed to proceed by single-electron-transfer oxidation and Friedel-Crafts alkylation.

View Article and Find Full Text PDF