Publications by authors named "Li-Yen Mae Huang"

Electroacupuncture has been shown to effectively reduce chronic pain in patients with nerve injury. The underlying mechanisms are not well understood. Accumulated evidence suggests that purinergic P2X3 receptors (P2X3Rs) in dorsal root ganglion neurons play a major role in mediating chronic pain associated with nerve injury.

View Article and Find Full Text PDF

The exchange proteins activated by cAMP (Epacs) have been shown to play important roles in producing inflammation-induced nociception. Transient receptor potential vanilloid type 1 (TRPV1) is a major receptor processing thermal and chemosensitive nociceptive information. The role of Epacs in modulating the activity of TRPV1 has yet to be determined.

View Article and Find Full Text PDF

Sensitization of purinergic P2X3 receptors (P2X3Rs) contributes to the production of exaggerated nociceptive responses following inflammatory injury. We showed previously that prostaglandin E2 (PGE2) potentiates P2X3R-mediated ATP currents in dorsal root ganglion neurons isolated from both control and complete Freund’s adjuvant-induced inflamed rats. PGE2 potentiation of ATP currents depends only on PKA signaling in control neurons, but it depends on both PKA and PKC signaling in inflamed neurons.

View Article and Find Full Text PDF

Sensitization of purinergic P2X3 receptors (P2X3Rs) is a major mechanism contributing to injury-induced exaggerated pain responses. We showed in a previous study that cyclic adenosine monophosphate (cAMP)-dependent guanine nucleotide exchange factor 1 (Epac1) in rat sensory dorsal root ganglia (DRGs) is upregulated after inflammatory injury, and it plays a critical role in P2X3R sensitization by activating protein kinase C epsilon (PKCε) inside the cells. protein kinase C epsilon has been established as the major PKC isoform mediating injury-induced hyperalgesic responses.

View Article and Find Full Text PDF

Background: We have previously shown that endogenously active purinergic P2X7 receptors (P2X7Rs) in satellite glial cells of dorsal root ganglia (DRGs) stimulate ATP release. The ATP activates P2Y1Rs located in the enwrapped neuronal somata, resulting in down-regulation of P2X3Rs. This P2X7R-P2Y1-P2X3R inhibitory control significantly reduces P2X3R-mediated nociceptive responses.

View Article and Find Full Text PDF

Background: Phosphorylation sites in the C-terminus of mu-opioid receptors (MORs) are known to play critical roles in the receptor functions. Our understanding of their participation in opioid analgesia is mostly based on studies of opioid effects on mutant receptors expressed in in vitro preparations, including cell lines, isolated neurons and brain slices. The behavioral consequences of the mutation have not been fully explored due to the complexity in studies of mutant receptors in vivo.

View Article and Find Full Text PDF

Patients with long-standing diabetes frequently demonstrate gastric hypersensitivity with an unknown mechanism. The present study was designed to investigate roles for nuclear factor-κB (NF-κB) and the endogenous H2S-producing enzyme cystathionine-β-synthetase (CBS) signaling pathways by examining cbs gene methylation status in adult rats with diabetes. Intraperitoneal injection of streptozotocin (STZ) produced gastric hypersensitivity in female rats in response to gastric balloon distention.

View Article and Find Full Text PDF

Background: Evaluation of analgesics in large animals is a necessary step in the development of better pain medications or gene therapy prior to clinical trials. However, chronic neuropathic pain models in large animals are limited. To address this deficiency, we developed a neuropathic pain model in sheep, which shares many anatomical similarities in spine dimensions and cerebrospinal fluid volume as humans.

View Article and Find Full Text PDF

Background: The purinergic P2X3 receptor (P2X3R) expressed in the dorsal root ganglion (DRG) sensory neuron and the P2X7 receptor (P2X7R) expressed in the surrounding satellite glial cell (SGC) are two major receptors participating in neuron-SGC communication in adult DRGs. Activation of P2X7Rs was found to tonically reduce the expression of P2X3Rs in DRGs, thus inhibiting the abnormal pain behaviors in adult rats. P2X receptors are also actively involved in sensory signaling in developing rodents.

View Article and Find Full Text PDF

Background: Diabetic neuropathy is a common neuropathy associated with paresthaesia and pain. The mechanisms underlying the painful conditions are not well understood. The aim of this study is to investigate the participation of purinergic P2X3 receptors in painful diabetic neuropathy.

View Article and Find Full Text PDF
Article Synopsis
  • * Each sensory neuron soma is surrounded by satellite glial cells (SGCs), which interact with the neurons without forming direct synapses, making their influence on neuronal activity indirect.
  • * Recent research highlights how ATP released from neuron somas activates SGCs, leading to complex modulatory effects on neuronal activity, indicating that SGCs play a significant role in processing sensory information.
View Article and Find Full Text PDF

Purinergic ionotropic P2X7 receptors (P2X7Rs) are closely associated with excitotoxicity and nociception. Inhibition of P2X7R activation has been considered as a potentially useful strategy to improve recovery from spinal cord injury and reduce inflammatory damage to trauma. The physiological functions of P2X7Rs, however, are poorly understood, even though such information is essential for making the P2X7R an effective therapeutic target.

View Article and Find Full Text PDF

Sensitization of purinergic P2X receptors is one of the mechanisms responsible for exaggerated pain responses to inflammatory injuries. Prostaglandin E2 (PGE2), produced by inflamed tissues, is known to contribute to abnormal pain states. In a previous study, we showed that PGE2 increases fast inactivating ATP currents that are mediated by homomeric P2X3 receptors in dorsal root ganglion (DRG) neurons isolated from normal rats.

View Article and Find Full Text PDF

Prostaglandin E2 (PGE2) is a well-known inflammatory mediator that enhances the excitability of DRG neurons. Homomeric P2X3 and heteromeric P2X2/3 receptors are abundantly expressed in dorsal root ganglia (DRG) neurons and participate in the transmission of nociceptive signals. The interaction between PGE2 and P2X3 receptors has not been well delineated.

View Article and Find Full Text PDF

P2X3 and P2X2/3 receptors in dorsal root ganglia (DRG) appear to participate in producing nociceptive responses after nerve injury. However, the mechanisms underlying the receptor-mediated nociception in the neuropathic state remain unclear. Using spared nerve injury (SNI) rats, we found that allodynic and nocifensive (flinch) behavioral responses developed after injury can be reversed by P2X receptor antagonists, indicating an involvement of P2X receptors.

View Article and Find Full Text PDF

Unlabelled: We have shown previously that using recombinant adeno-associated viral vector (rAAV) to up-regulate mu opioid receptors (muORs) in dorsal root ganglia (DRGs) increases the potency of subcutaneous morphine. Here we report an improved method of introducing rAAV-muOR viral vectors into DRGs. Instead of injecting the rAAV-muOR gene directly into DRGs as shown before, the vector was introduced into the sciatic nerve of rats.

View Article and Find Full Text PDF

To elucidate the functional link between Ca(2+)/calmodulin protein kinase II (CaMKII) and P2X receptor activation, we studied the effects of electrical stimulation, such as occurs in injurious conditions, on P2X receptor-mediated ATP responses in primary sensory dorsal root ganglion neurons. We found that endogenously active CaMKII up-regulates basal P2X3 receptor activity in dorsal root ganglion neurons. Electrical stimulation causes prolonged increases in ATP currents that lasts up to approximately 45 min.

View Article and Find Full Text PDF

Transferring therapeutic genes into the nociceptive system, including dorsal root ganglia (DRGs) and the spinal cord, is potentially a powerful approach for the treatment of chronic pain in humans. Adeno-associated viral vectors (AAVs) are particularly useful in delivering foreign genes to targeted tissues because they seldom induce immune responses or produce cytotoxicity. To determine the efficiency of transgene expression and the best route(s) of delivery, a recombinant AAV type 2 vector containing the enhanced green fluorescent protein (EGFP) gene driven by the neuron-specific enolase (NSE) promoter (rAAV-EGFP) was constructed.

View Article and Find Full Text PDF

ATP-gated P2X receptors in nociceptive sensory neurons participate in transmission of pain signals from the periphery to the spinal cord. To determine the role of P2X receptors under injurious conditions, we examined ATP-evoked responses in dorsal root ganglion (DRG) neurons isolated from rats with peripheral inflammation, induced by injections of complete Freund's adjuvant (CFA) into the hindpaw. Application of ATP induced both fast- and slow-inactivating currents in control and inflamed neurons.

View Article and Find Full Text PDF

Gabapentin (Neurontin) (GBP) is a widely prescribed analgesic used in treating pain patients with peripheral nerve injuries, diabetic neuropathy and cancer. To understand the mechanism of its action, we used the whole-cell patch recording technique to study the effects of GBP on N-methyl-D-aspartate (NMDA)-evoked currents in single dorsal horn neurons isolated from normal rats and from rats with inflammation induced by the injection of complete Freund adjuvant (CFA) to the hindpaw. We found that GBP enhanced NMDA currents in normal neurons only when protein kinase C (PKC) was added to these cells.

View Article and Find Full Text PDF