The mechanism underlying neurogenesis during embryonic spinal cord development involves a specific ligand/receptor interaction, which may be help guide neuroengineering to boost stem cell-based neural regeneration for the structural and functional repair of spinal cord injury. Herein, we hypothesized that supplying spinal cord defects with an exogenous neural network in the NT-3/fibroin-coated gelatin sponge (NF-GS) scaffold might improve tissue repair efficacy. To test this, we engineered -modified neural stem cell (NSC)-derived neural network tissue with robust viability within an NF-GS scaffold.
View Article and Find Full Text PDFTransition-metal-catalyzed cycloisomerization of 1,n-allenynes represents a powerful synthetic tool to rapidly assemble complex polycyclic skeletons from simple linear substrates. Nevertheless, there are no reports of the asymmetric version of these reactions. Moreover, most of these reactions proceed through a 6-endo-dig cyclization pathway, which preferentially delivers the distal product (via 5/5 rhodacyclic intermediate) rather than the proximal one (via 6/5 rhodacyclic intermediate).
View Article and Find Full Text PDF