Because of the widespread application of anesthetic drugs in the fields of animal breeding and transportation, demand for the rapid, sensitive detection of anesthetic drugs in animal meat is increasing. The complex animal meat matrix contains various interfering substances, such as proteins, fats, and phospholipids, along with anesthetic drug residues at very low concentrations. Therefore, adopting appropriate pretreatment methods is necessary to improve the sensitivity of detection.
View Article and Find Full Text PDFDextromethorphan (DEX) is an antitussive agent used in many cough and cold medications, and dextrorphan (DOR) is its metabolite. Owing to their similar structures, optimization of the condition for the chromatography approach, which is in common use for determination, is both demanding and time-consuming. This paper describes a methodology that combines excitation-emission matrix fluorescence spectra with second-order calibration, and was applied to simultaneously and directly determine DEX and DOR contents in plasma samples.
View Article and Find Full Text PDFA method using high performance liquid chromatography with photodiode-array detection (HPLC-DAD) coupled with alternating trilinear decomposition (ATLD) algorithm was proposed for simultaneous determination of psoralen and isopsoralen in plasma and Chinese medicine "Xian Ling Gu Bao" capsule (XLGBC). In this paper, the application of ATLD algorithm into traditional chromatographic method can handle this problem that the chromatographic and spectral peaks are heavily overlapped among the analytes and even between the analytes and interferences from the background matrices. A simple improvement of chromatographic condition like mobile phase is not enough to realize effective separation for the two isomeric compounds, especially in the presence of interferences.
View Article and Find Full Text PDFTwo second-order calibration methods based on the parallel factor analysis (PARAFAC) and the alternating penalty trilinear decomposition (APTLD) method, have been utilized for the direct determination of terazosin hydrochloride (THD) in human plasma samples, coupled with the excitation-emission matrix fluorescence spectroscopy. Meanwhile, the two algorithms combing with the standard addition procedures have been applied for the determination of terazosin hydrochloride in tablets and the results were validated by the high-performance liquid chromatography with fluorescence detection. These second-order calibrations all adequately exploited the second-order advantages.
View Article and Find Full Text PDF