This study used the brilliant cresyl blue (BCB) staining method to group buffalo oocytes (BCB+ and BCB-) and perform in vitro maturation, in vitro fertilization and embryo culture. At the same time, molecular biology techniques were used to detect gap junction protein expression and oxidative stress-related indicators to explore the molecular mechanism of BCB staining to predict oocyte developmental potential. The techniques of buffalo oocytes to analyse their developmental potential and used immunofluorescence staining to detect the expression level of CX43 protein, DCFH-DA probe staining to detect ROS levels and qPCR to detect the expression levels of the antioxidant-related genes SOD2 and GPX1.
View Article and Find Full Text PDFEndometriosis (EMS) is a common gynecologic disease that causes chronic pelvic pain, dysmenorrhea, and infertility in women. The doctrine of menstruation back flow planting and defects in the immune system are well known and widely accepted. In recent years, increasing studies have been focused on the role of autophagy in EMS, and have shown that autophagy plays a vital role in EMS.
View Article and Find Full Text PDFMetformin is commonly used for treating type II diabetes and has recently been reported to possess anti-proliferative properties that can be exploited for the prevention and treatment of a variety of cancers. Ginsenosides are the main effective biological components of ginseng. It has been reported that ginsenoside-Rb2 inhibit the invasiveness of endometrial cancer cells (ECC).
View Article and Find Full Text PDFThe dysfunction of NK cells in women with endometriosis (EMS) contributes to the immune escape of menstrual endometrial fragments refluxed into the peritoneal cavity. The reciprocal communications between endometrial stromal cells (ESCs) and lymphocytes facilitate the development of EMS. However, the mechanism of these communications on cytotoxicity of natural killer (NK) cells in endometriotic milieus is still largely unknown.
View Article and Find Full Text PDFMetal nanostructure material has attracted great attention due to its surface plasmon resonance. The optical properties of heterodimer metallic nanostructure materials are different compared with that of homogeneous nanostructure materials because their symmetry structure is broken. The symmetry of the original structures will be changed, and the interaction between the two particles will produce Fano resonance.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
February 2012
Highly ordered silver nanopore and nanocap arrays, which were used as surface-enhanced Raman scattering active (SERS-active) substrates, were fabricated by electron-beam evaporating silver on the surface of porous layer and barrier layer of porous anodic alumina (PAA) membranes, respectively. The SERS characteristics of the SERS-active substrates were tested with bladder cancer cells as molecular probe. The results indicated that both the SERS-active substrates displayed a strong SERS enhancement effect.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
January 2012
The scope of this research lies in diagnosis of bladder cancer through Raman spectra. The spectra of bladder cancer and normal bladder were measured by using laser confocal Raman micro-spectroscopy. Principal component analysis/support vector machines was applied to the spectral dataset to construct diagnostic algorithms, then to detect the accuracy of these algorithms to determine histological diagnosis by leave-one-out cross validation from its Raman spectrum.
View Article and Find Full Text PDFZhongguo Zhen Jiu
October 2010
Objective: To explore the adjunctive therapeutic effects of acupuncture for leukopenia induced by chemotherapy. METHODS Eighty six cases with leukopenia after chemotherapy treatment were randomly divided into a granulocyte colony-stimulating factor (G-CSF) plus acupuncture (A) group and a G-CSF group, 43 cases in each group. After chemotherapy treatments, the patients of both groups were treated with G-CSF for 4 times, with acupuncture at Zhigou (TE 6), Quchi (LI 11), Hegu (LI 4), etc.
View Article and Find Full Text PDF