Publications by authors named "Li-Qiang Xie"

Passivating defects at the wide-bandgap perovskite/C60 interface without impeding interfacial charge transport can effectively enhance the efficiency of perovskite/silicon tandem solar cells (TSCs). Herein, we study the impact of benzene-derivative ligands with elaborately modulated binding strength and acidity on wide-bandgap perovskites for high-performance perovskite/silicon TSCs. Specifically, the acidity/alkalinity and binding strength are preliminary tuned using different functional groups of -PO₃H₂, -COOH, and -NH₂, and further finely adjusted by altering the chain lengths between the benzene ring and the functional groups.

View Article and Find Full Text PDF

Designing and synthesizing fullerene bisadducts with a higher-lying conduction band minimum is promising to further improve the device performance of tin-based perovskite solar cells (TPSCs). However, the commonly obtained fullerene bisadduct products are isomeric mixtures and require complicated separation. Moreover, the isomeric mixtures are prone to resulting in energy alignment disorders, interfacial charge loss, and limited device performance improvement.

View Article and Find Full Text PDF

The progress of plasmon-based technologies relies on an understanding of the properties of the enhanced electromagnetic fields generated by the coupling nanostrucutres. Plasmon-enhanced applications include advanced spectroscopies, optomechanics, optomagnetics and biosensing. However, precise determination of plasmon field intensity distribution within a nanogap remains challenging.

View Article and Find Full Text PDF
Article Synopsis
  • - Perovskite solar cells show potential to compete with silicon-based cells, but struggle with long-term stability due to issues with the intrinsic stability of perovskite materials.
  • - Researchers created a series of cesium-containing perovskite alloys, investigating their structural stabilities against environmental factors like light, heat, and moisture, revealing two phase separation processes when cesium or bromide content increases.
  • - A new stable composition, (FAPbI)(MAPbBr)(CsPbBr), was developed, showing impressive stability with 16 μs carrier lifetime and maintaining stability for over 10,000 hours in water-oxygen tests and 1,000 hours in light tests, indicating promise for high-efficiency solar
View Article and Find Full Text PDF

The spontaneous α-to-δ phase transition of the formamidinium-based (FA) lead halide perovskite hinders its large scale application in solar cells. Though this phase transition can be inhibited by alloying with methylammonium-based (MA) perovskite, the underlying mechanism is largely unexplored. In this Communication, we grow high-quality mixed cations and halides perovskite single crystals (FAPbI)(MAPbBr) to understand the principles for maintaining pure perovskite phase, which is essential to device optimization.

View Article and Find Full Text PDF

Organolead halide perovskites exhibit superior photoelectric properties, which have given rise to the perovskite-based solar cells whose power conversion efficiency has rapidly reached above 20% in the past few years. However, perovskite-based solar cells have also encountered problems such as current-voltage hysteresis and degradation under practical working conditions. Yet investigations into the intrinsic chemical nature of the perovskite material and its role on the performance of the solar cells are relatively rare.

View Article and Find Full Text PDF