Publications by authors named "Li-Pu Wang"

Mussel adhesive proteins (MAPs) have a unique ability to firmly adhere to different surfaces in aqueous environments via the special amino acid, 3,4-dihydroxyphenylalanine (DOPA). The catechol groups in DOPA are a key group for adhesive proteins, which is highly informative for the biomedical domain. By simulating MAPs, medical products can be developed for tissue adhesion, drug delivery, and wound healing.

View Article and Find Full Text PDF

In this study, the porous composite films of carboxymethyl chitosan/alginate/tranexamic acid were fabricated, with calcium chloride as the crosslinking agent and glycerin as a plasticizer. The composite films were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The properties of the composite films, including water absorption, air permeability, and cumulative release rate, were tested.

View Article and Find Full Text PDF

Effective hemostasis is vital to reduce the pain and mortality of patients, and the research and development of hemostatic materials are prerequisite for effective hemostasis. Chitosan (CS), with good biodegradability, biocompatibility and non-toxicity, has been widely applied in bio-medicine, the chemical industry, the food industry and cosmetics. The excellent hemostatic properties of CS have been extensively studied.

View Article and Find Full Text PDF

The mechanism of the thermal degradation and the toxicity of the thermal degradation products of agar were studied using TG/DTA, Fourier-transform infrared spectroscopy and pyrolysis gas chromatography/mass spectrometry. It was found that the thermal degradation of agar is a single-step reaction, the thermal degradation temperature (T, T, T) increases with increasing gel strength (P) and the influence of P on the thermal degradation rate is modest. The thermal degradation of agar is an exothermic reaction, and the activation energy of the reaction increases with increasing P.

View Article and Find Full Text PDF

The purpose of this study was to develop a promising burns dressing. Chiosan (CS) has been widely used as biomaterials, in combination with marine peptides (MPs) extracted from seawater cultured Tilapia, the newly developed material Chitosan-Marine Peptides hydrogels (CSMP) in this study showed antibacterial activity, pro-cell proliferation and migration, well burning healing. Pathological examinations by HE staining demonstrated that CSMP had pronounced wound healing efficiencies.

View Article and Find Full Text PDF

Chitosan as a natural polysaccharide derived from chitin of arthropods like shrimp and crab, attracts much interest due to its inherent properties, especially for application in biomedical materials. Presently, biodegradable and biocompatible chitosan nanoparticles are attractive for drug delivery. However, some physicochemical characteristics of chitosan nanoparticles still need to be further improved in practice.

View Article and Find Full Text PDF

Objective: To observe the intervention effect of Leihong Granule (LG) in in-stent restenosis (ISR) after endovascular therapy for lower extremity arterial occlusive diseases (LEAOD).

Methods: Recruited 80 LEAOD patients who successfully underwent endovascular therapy (balloon dilation and stent implantation) were randomly assigned to two groups, the control group and the LG group, 40 in each group. Patients in the control group received basic treatment, while those in the LG group additionally took LG for 3 months.

View Article and Find Full Text PDF

N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) is hydro-soluble chitosan (CS) derivative, which can be obtained by the reaction between epoxypropyl trimethyl ammonium chloride (ETA) and CS. The preparation parameters for the synthesis of HTCC were optimized by orthogonal experimental design. ETA was successfully grafted into the free amino group of CS.

View Article and Find Full Text PDF