Front Microbiol
November 2022
Objective: To explore the function and mechanism of microRNA-155 to regulate the angiogenesis after the cerebral infarction of rats through the angiotensin II receptor 1 (AT1R)/vascular endothelial growth factor (VEGF) signaling pathway.
Methods: Female SD rats were chosen for the construction of cerebral infarction model of rats using the modified right middle cerebral artery occlusion. The real-time PCR (RT-PCR) method was employed to detect the expression of microRNA-155 in each group at different time points after the cerebral infarction (1 h, l d, 3 d and 7 d).
The role of actin filaments in allodynia induced by chronic compression of the dorsal root ganglion (DRG) (CCD) and the effects of microfilaments dynamics on transient receptor potential vanilloid 4 (TRPV4) were investigated in this study. Anti-microfilaments agents resulted in dose-dependent and partial reduction in CCD-induced allodynia, which could be prevented by the prior stabilizer administration. In association with the reduction of allodynia by microfilaments' disruption, TRPV4-mediated currents were inhibited by disruptors.
View Article and Find Full Text PDFThe aim of this study was to test the hypothesis that nuclear factor-kappa B (NF-κB) is involved in TRPV4-NO pathway in thermal hyperalgesia following chronic compression of the dorsal root ganglion (DRG) (the procedure hereafter termed CCD) in rat. Intrathecal administration of two NF-κB inhibitors, pyrrolidine dithiocarbamate (PDTC; 10(-1) to 10(-2)M) and BAY (100-50 μM), both induced significantly dose-dependent increase in the paw withdrawal latency (PWL) and decrease in nitric oxide (NO) content in DRG when compared with control rats. Pretreatment with 4α-phorbol 12,13-didecanoate (4α-PDD, transient receptor potential vanilloid 4 (TRPV4) synthetic activator, 1 nm) attenuated the suppressive effects of PDTC (10(-1)M) and BAY (100 μM) on CCD-induced thermal hyperalgesia and NO production.
View Article and Find Full Text PDFThe aim of the present study was to test the hypothesis that the TRPV4-NO-cGMP-PKG cascade is involved in the maintenance of thermal hyperalgesia following chronic compression of the dorsal root ganglion (DRG) (the procedure hereafter termed CCD) in rats. CCD rats showed thermal hyperalgesia and increased nitrite production. Intrathecal administration of ruthenium red (TRPV4 antagonist, 0.
View Article and Find Full Text PDF