Hearing sensitivity and noise protection are mediated and determined by negative feedback of the cochlear efferent system. Type II auditory nerves (ANs) innervate outer hair cells (OHCs) in the cochlea and provide an input to this efferent control. However, little is known about underlying channel information.
View Article and Find Full Text PDFUnlabelled: Noise can induce hearing loss. In particularly, noise can induce cochlear synapse degeneration leading to hidden hearing loss, which is the most common type of hearing disorders in the clinic. Currently, there is no pharmacological treatment, particularly, no post-exposure (i.
View Article and Find Full Text PDFGap junction gene (Cx26) mutations cause >50% of nonsyndromic hearing loss. Its recessive hetero-mutation carriers, who have no deafness, occupy ~10 to 20% of the general population. Here, we report an unexpected finding that these heterozygote carriers have hearing oversensitivity, and active cochlear amplification increased.
View Article and Find Full Text PDFIt is critical for hearing that the descending cochlear efferent system provides a negative feedback to hair cells to regulate hearing sensitivity and protect hearing from noise. The medial olivocochlear (MOC) efferent nerves project to outer hair cells (OHCs) to regulate OHC electromotility, which is an active cochlear amplifier and can increase hearing sensitivity. Here, we report that the MOC efferent nerves also could innervate supporting cells (SCs) in the vicinity of OHCs to regulate hearing sensitivity.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by a progressive loss of memory and cognitive decline. However, the assessment of AD-associated functional and cognitive changes is still a big challenge. Auditory-evoked cortical potential (AECP) is an event-related potential reflecting not only neural activation in the auditory cortex (AC) but also cognitive activity in the brain.
View Article and Find Full Text PDFInner hair cell (IHC) ribbon synapses are the first synapse in the auditory system and can be degenerated by noise and aging, thereby leading to hidden hearing loss (HHL) and other hearing disorders. However, the mechanism underlying this cochlear synaptopathy remains unclear. Here, we report that elevation of extracellular K, which is a consequence of noise exposure, could cause IHC ribbon synapse degeneration and swelling.
View Article and Find Full Text PDFAm J Stem Cells
February 2020
Postnatal mammalian cochlear hair cells (HCs) can be regenerated by direct transdifferentiation or by mitotic regeneration from supporting cells through many pathways, including Atoh1, Wnt, Hedgehog and Notch signaling. However, most new HCs are immature HCs. In this study we used RNA-Seq analysis to compare the differences between the transcriptomes of overexpression-induced new HCs and the native HCs, and to define the factors that might help to promote the maturation of new HCs.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurodegenerative disease characterized by a progressive loss of memory and cognitive decline. Over the last decade, it has been found that defects in sensory systems could be highly associated with AD. Hearing is an important neural sense.
View Article and Find Full Text PDFThe Wnt/β-catenin pathway serves important roles in cancer development. The expression and function of Chibby (Cby), as a direct antagonist of β-catenin, in nasopharyngeal carcinoma (NPC) has not been fully investigated. The present study revealed that the mRNA and protein expression of Cby was significantly lower in NPC tissue than in the adjacent normal tissue.
View Article and Find Full Text PDF