Publications by authors named "Li-Lian Yuan"

Regular exercise has numerous health benefits, but the human population displays significant variability in exercise participation. Rodent models, such as voluntary wheel running (VWR) in rats, can provide insight into the underlying mechanisms of exercise behavior and its regulation. In this study, we focused on the role of estrogen on VWR in female rats.

View Article and Find Full Text PDF

Risk of bias assessment is a critical step of any meta-analysis or systematic review. Given the low sample count of many microbiome studies, especially observational or cohort studies involving human subjects, many microbiome studies have low power. This increases the importance of performing meta-analysis and systematic review for microbiome research in order to enhance the relevance and applicability of microbiome results.

View Article and Find Full Text PDF

Introduction: Sedentary lifestyles have reached epidemic proportions world-wide. A growing body of literature suggests that exposures to adverse experiences (e.g.

View Article and Find Full Text PDF

Protein kinases and their substrates form signaling networks partitioned across subcellular compartments to facilitate critical biological processes. While the subcellular roles of many individual kinases have been elucidated, a comprehensive assessment of the synaptic subkinome is lacking. Further, most studies of kinases focus on transcript, protein, and/or phospho-protein expression levels, providing an indirect measure of protein kinase activity.

View Article and Find Full Text PDF

QIIME is a widely used, open-source microbiome analysis software package that converts raw sequence data into interpretable visualizations and statistical results. QIIME2 has recently succeeded QIIME1, becoming the most updated platform. The protocols in this article describe our effort in automating core functions of QIIME2, using datasets available at docs.

View Article and Find Full Text PDF

Ketamine has been in use for over 50 years as a general anesthetic, acting primarily through blockade of -methyl-D-aspartate receptors in the brain. Recent studies have demonstrated that ketamine also acts as a potent and rapid-acting antidepressant when administered at sub-anesthetic doses. However, the precise mechanism behind this effect remains unclear.

View Article and Find Full Text PDF

Pain is a major health problem, affecting over fifty million adults in the US alone, with significant economic cost in medical care and lost productivity. Despite evidence implicating nicotinic acetylcholine receptors (nAChRs) in pathological pain, their specific contribution to pain processing in the spinal cord remains unclear given their presence in both neuronal and non-neuronal cell types. Here we investigated if loss of neuronal-specific TMEM35a (NACHO), a novel chaperone for functional expression of the homomeric α7 and assembly of the heteromeric α3, α4, and α6-containing nAChRs, modulates pain in mice.

View Article and Find Full Text PDF

Recent research into the rapid antidepressant effect of subanesthetic doses of ketamine have identified a series of relevant protein cascades activated within hours of administration. Prior to, or concurrent with, these activation cascades, ketamine treatment generates dissociative and psychotomimetic side effects along with an increase in circulating glucocorticoids. In rats, we observed an over 3-fold increase in corticosterone levels in both serum and brain tissue, within an hour of administration of low dose ketamine (10 mg/kg), but not with (2R, 6R)-hydroxynorketamine (HNK) (10 mg/kg), a ketamine metabolite shown to produce antidepressant-like action in rodents without inducing immediate side-effects.

View Article and Find Full Text PDF

Protein prenylation is a post-translational lipid modification that governs a variety of important cellular signaling pathways, including those regulating synaptic functions and cognition in the nervous system. Two enzymes, farnesyltransferase (FT) and geranylgeranyltransferase type I (GGT), are essential for the prenylation process. Genetic reduction of FT or GGT ameliorates neuropathology but only FT haplodeficiency rescues cognitive function in transgenic mice of Alzheimer's disease.

View Article and Find Full Text PDF

U0126 (1,4-diamino-2,3-dicyano-1,4-bis (2-aminophenylthio) butadiene), a widely used mitogen-activated protein kinase kinase (MEK) inhibitor, was found to accelerate voltage-gated K channel (K) inactivation in heterologous cells expressing several types of K. The goal of this study was to examine whether U0126 at a concentration thought to specifically inhibit MEK signaling also inhibits K in native neurons of primary cultures or brain slices. U0126 caused a dose-dependent inhibition of both the transient (I) and sustained (I) components of K currents in hippocampal neurons.

View Article and Find Full Text PDF

Isoprenoids and prenylated proteins regulate a variety of cellular functions, including neurite growth and synaptic plasticity. Importantly, they are implicated in the pathogenesis of several diseases, including Alzheimer's disease (AD). Recently, we have shown that two protein prenyltransferases, farnesyltransferase (FT) and geranylgeranyltransferase-1 (GGT), have differential effects in a mouse model of AD.

View Article and Find Full Text PDF

Kinase-mediated signaling cascades regulate a number of different molecular mechanisms involved in cellular homeostasis, and are viewed as one of the most common intracellular processes that are robustly dysregulated in the pathophysiology of mood disorders such as depression. Newly emerged, rapid acting antidepressants are able to achieve therapeutic improvement, possibly in part, through stimulating activity of kinase-dependent signaling pathways. Thus, advancements in our understanding of how kinases may contribute to development and treatment of depression seem crucial.

View Article and Find Full Text PDF

The mounting of appropriate emotional and neuroendocrine responses to environmental stressors critically depends on the hypothalamic-pituitary-adrenal (HPA) axis and associated limbic circuitry. Although its function is currently unknown, the highly evolutionarily conserved transmembrane protein 35 (TMEM35) is prominently expressed in HPA circuitry and limbic areas, including the hippocampus and amygdala. To investigate the possible involvement of this protein in neuroendocrine function, we generated tmem35 knockout (KO) mice to characterize the endocrine, behavioral, electrophysiological, and proteomic alterations caused by deletion of the tmem35 gene.

View Article and Find Full Text PDF

Neuropsychiatric symptoms and mental illness are commonly present in patients with chronic systemic diseases. Mood disorders, such as depression, are present in up to 50% of these patients, resulting in impaired physical recovery and more intricate treatment regimen. Stress associated with both physical and emotional aspects of systemic illness is thought to elicit detrimental effects to initiate comorbid mental disorders.

View Article and Find Full Text PDF

The ramifications of statins on plasma cholesterol and coronary heart disease have been well documented. However, there is increasing evidence that inhibition of the mevalonate pathway may provide independent neuroprotective and procognitive pleiotropic effects, most likely via inhibition of isoprenoids, mainly farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). FPP and GGPP are the major donors of prenyl groups for protein prenylation.

View Article and Find Full Text PDF

Isoprenoids and prenylated proteins have been implicated in the pathophysiology of Alzheimer disease (AD), including amyloid-β precursor protein metabolism, Tau phosphorylation, synaptic plasticity, and neuroinflammation. However, little is known about the relative importance of the two protein prenyltransferases, farnesyltransferase (FT) and geranylgeranyltransferase-1 (GGT), in the pathogenesis of AD. In this study, we defined the impact of deleting one copy of FT or GGT on the development of amyloid-β (Aβ)-associated neuropathology and learning/memory impairments in APPPS1 double transgenic mice, a well established model of AD.

View Article and Find Full Text PDF

Iron deficiency (ID) during early life causes long-lasting detrimental cognitive sequelae, many of which are linked to alterations in hippocampus function, dopamine synthesis, and the modulation of dopaminergic circuitry by the hippocampus. These same features have been implicated in the origins of schizophrenia, a neuropsychiatric disorder with significant cognitive impairments. Deficits in sensorimotor gating represent a reliable endophenotype of schizophrenia that can be measured by prepulse inhibition (PPI) of the acoustic startle reflex.

View Article and Find Full Text PDF

The tail suspension test (TST) as an antidepressant and depression-related behavior screen, has many advantages over the forced swim test (FST) in terms of procedural simplicity and consistent SSRI response. However, the FST has traditionally offered more specific neuromodulatory information by differentiating between serotonin (5-HT) and norepinephrine sensitive behavior categories. Head movement is a newly characterized behavior endpoint in the FST and TST with a selective 5-HT sensitivity.

View Article and Find Full Text PDF

NMDA receptors become a major contributor to acute ethanol intoxication effects at high concentrations as ethanol binds to a unique site on the receptor and inhibits glutamatergic activity in multiple brain areas. Although a convincing body of literature exists on the ability of NMDA receptor antagonists to mimic and worsen cellular and behavioral ethanol effects, receptor agonists have been less well-studied. In addition to a primary agonist site for glutamate, the NMDA receptor contains a separate co-agonist site that responds to endogenous amino acids glycine and d-serine.

View Article and Find Full Text PDF

Purpose: Previous work has shown that levetiracetam (LEV) binds the vesicular protein SV2A and reduces excitatory neurotransmitter release during trains of high-frequency activity, most likely by accessing its binding site through vesicular endocytosis into excitatory synaptic terminals. Because there are differences in excitatory and inhibitory transmitter release mechanisms, and there are suggestions that neurons differ in their SV2A expression, we were curious whether LEV also reduces inhibitory transmission.

Methods: We used patch-clamp recording from CA1 neurons in rat brain slices to quantify the effects of LEV on inhibitory postsynaptic currents (IPSCs).

View Article and Find Full Text PDF

Cortical neurons receive individual as well as synchronized synaptic events. The latter may drive a neuron into an active state where a persistently depolarized membrane potential lasts for several seconds. Visual inspection and manual detection of these persistent events is labor-intensive.

View Article and Find Full Text PDF

The microtubule-associated protein tau accumulates in Alzheimer's and other fatal dementias, which manifest when forebrain neurons die. Recent advances in understanding these disorders indicate that brain dysfunction precedes neurodegeneration, but the role of tau is unclear. Here, we show that early tau-related deficits develop not from the loss of synapses or neurons, but rather as a result of synaptic abnormalities caused by the accumulation of hyperphosphorylated tau within intact dendritic spines, where it disrupts synaptic function by impairing glutamate receptor trafficking or synaptic anchoring.

View Article and Find Full Text PDF

Chromosomal rearrangement (CR) events result from abnormal breaking and rejoining of the DNA molecules, or from crossing-over between repetitive DNA sequences, and they are involved in many tumor and non-tumor diseases. Investigations of disease-associated CR events can not only lead to important discoveries about DNA breakage and repair mechanisms, but also offer important clues about the pathologic causes and the diagnostic/therapeutic targets of these diseases. We have developed a database of Chromosomal Rearrangements In Diseases (dbCRID, http://dbCRID.

View Article and Find Full Text PDF

Kv4.2-mediated A-type K(+) channels in dendrites act to dampen back-propagating action potentials, constrain coincidence detection, and modify synaptic properties. Because of naturally high concentrations in the hippocampus, genetic deletion of this protein results in enhanced CA1 dendritic excitability and a broader signal integration time window with potential implications for spatial learning.

View Article and Find Full Text PDF