Publications by authors named "Li-Jung Tai"

This paper presents novel surface profilometry for both geometric part error and metallurgical material property distribution measurements of the additively manufactured and post-processed rods. The measurement system, the so-called fiber optic-eddy current sensor, consists of a fiber optic displacement sensor and an eddy current sensor. The electromagnetic coil was wrapped around the probe of the fiber optic displacement sensor.

View Article and Find Full Text PDF
Article Synopsis
  • AKCEA-TTR-L is a new ligand-conjugated antisense drug aimed at treating hereditary transthyretin amyloidosis (hATTR) by enhancing drug uptake in liver cells, potentially improving its effectiveness with lower doses compared to inotersen.
  • The NEURO-TTRansform study will enroll about 140 adults with varying stages of hATTR polyneuropathy to evaluate the drug's safety and efficacy against inotersen over a 66-week period.
  • The main goals of the study include measuring changes in serum TTR levels, neurological function, and quality of life, ultimately assessing whether AKCEA-TTR-L can provide better outcomes for patients.
View Article and Find Full Text PDF

Aims: Amyloidogenic transthyretin (ATTR) amyloidosis is a fatal disease characterized by progressive cardiomyopathy and/or polyneuropathy. AKCEA-TTR-L (ION-682884) is a ligand-conjugated antisense drug designed for receptor-mediated uptake by hepatocytes, the primary source of circulating transthyretin (TTR). Enhanced delivery of the antisense pharmacophore is expected to increase drug potency and support lower, less frequent dosing in treatment.

View Article and Find Full Text PDF

Inotersen, a 2'-O-methoxyethyl (2'-MOE) phosphorothioate antisense oligonucleotide, reduced disease progression and improved quality of life in patients with hereditary transthyretin amyloidosis with polyneuropathy (hATTR-PN) in the NEURO-TTR and NEURO-TTR open-label extension (OLE) trials. However, 300 mg/week inotersen treatment was associated with platelet count reductions in several patients. Mean platelet counts in patients in the NEURO-TTR-inotersen group remained ≥140 × 10/L in 50% and ≥100 × 10/L in 80% of the subjects.

View Article and Find Full Text PDF

Objective: To evaluate the safety and efficacy of IONIS-GCGR, a 2'--methoxyethyl antisense oligonucleotide targeting the glucagon receptor (GCGR), and the underlying mechanism of liver transaminase increases in patients with type 2 diabetes on stable metformin therapy.

Research Design And Methods: In three phase 2, randomized, double-blind studies, patients with type 2 diabetes on metformin received weekly subcutaneous injections of IONIS-GCGR (50-200 mg) or placebo for 13 or 26 weeks.

Results: Significant reductions in HbA were observed after IONIS-GCGR treatment versus placebo at week 14 (-2.

View Article and Find Full Text PDF

Background: Epidemiologic and genomewide association studies have linked loss-of-function variants in ANGPTL3, encoding angiopoietin-like 3, with low levels of plasma lipoproteins.

Methods: We evaluated antisense oligonucleotides (ASOs) targeting Angptl3 messenger RNA (mRNA) for effects on plasma lipid levels, triglyceride clearance, liver triglyceride content, insulin sensitivity, and atherosclerosis in mice. Subsequently, 44 human participants (with triglyceride levels of either 90 to 150 mg per deciliter [1.

View Article and Find Full Text PDF

The incidence of type 1 diabetes (T1D) is increasing worldwide and there is a very large need for effective therapies. Essentially no therapies other than insulin are currently approved for the treatment of T1D. Drugs already in use for type 2 diabetes and many new drugs are under clinical development for T1D, including compounds with both established and new mechanisms of action.

View Article and Find Full Text PDF

The global burden of type 2 diabetes is increasing worldwide, and successful treatment of this disease needs constant provision of new drugs. Twelve classes of antidiabetic drugs are currently available, and many new drugs are under clinical development. These include compounds with known mechanisms of action but unique properties, such as once-weekly DPP4 inhibitors or oral insulin.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor (PPAR)-δ is a nuclear hormone receptor that is mainly involved in lipid metabolism. Recent studies have suggested that PPAR-δ agonists exert vascular protective effects. The present study was designed to characterize vascular function in mice with genetic inactivation of PPAR-δ in the endothelium.

View Article and Find Full Text PDF

Chronic inflammation is a hallmark of atherosclerosis, but its transcriptional underpinnings are poorly understood. We show that the transcriptional repressor Bcl6 is an anti-inflammatory regulator whose loss in bone marrow of Ldlr(-/-) mice results in severe atherosclerosis and xanthomatous tendonitis, a virtually pathognomonic complication in patients with familial hypercholesterolemia. Disruption of the interaction between Bcl6 and SMRT or NCoR with a peptide inhibitor in vitro recapitulated atherogenic gene changes in mice transplanted with Bcl6-deficient bone marrow, pointing to these cofactors as key mediators of Bcl6 inflammatory suppression.

View Article and Find Full Text PDF

Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1), a protein in the lymphocyte antigen 6 (Ly-6) family, plays a key role in the lipolytic processing of triglyceride-rich lipoproteins. GPIHBP1 binds lipoprotein lipase and chylomicrons and is expressed along the luminal surface of microvascular endothelial cells. Lipolysis is known to be regulated by metabolic factors and is controlled at multiple levels, including the number of LPL binding sites on capillaries.

View Article and Find Full Text PDF

Heat shock factor-binding protein (HSBP) 1 is a small, evolutionarily conserved protein originally identified in a yeast two-hybrid screen using the trimerization domain of heat shock factor (HSF) 1 as the bait. Similar in size to HSF1 trimerization domain, human HSBP1 contains two arrays of hydrophobic heptad repeats (designated HR-N and HR-C) characteristic of coiled-coil proteins. Proteins of the HSBP family are relatively small (<100 residues), comprising solely a putative coiled-coil oligomerization domain without any other readily recognizable structural or functional motif.

View Article and Find Full Text PDF