Publications by authors named "Li-Fang Qin"

DNA methylation modifications are an important mechanism affecting the process of atherosclerosis (AS). Previous studies have shown that Galectin-8 (GAL8) DNA methylation level is associated with sudden death of coronary heart disease or acute events of coronary heart disease. However, the mechanism of GAL8 DNA methylation and gene expression in AS has not been elucidated, prompting us to carry out further research on it.

View Article and Find Full Text PDF

This study aims to separate and characterize self-assembled nanoparticles(SAN) from Shaoyao Gancao Decoction(SGD) and determine the content of active compounds. Further, we aimed to observe the therapeutic effect of SGD-SAN on imiquimod-induced psoriasis in mice. The separation of SGD was performed by dialysis, and the separation process was optimized by single factor experiment.

View Article and Find Full Text PDF

The present study is to establish Caco-2/HT29-MTX co-cultured cells and investigate the transport capability of PLGA nanoparticles with different surface chemical properties across Caco-2/HT29-MTX co-cultured cells. PLGA-NPs, mPEG-PLGA-NPs and chitosan coated PLGA-NPs were prepared by nanoprecipitation method using poly(lactic-co-glycolic acid) as carrier material with surface modified by methoxy poly(ethylene glycol) and chitosan. The particle size and zeta potential of nanoparticles were measured by dynamic light scattering.

View Article and Find Full Text PDF

Continuous wave 808 nm pump laser-induced thermal damage of polycrystalline transparent ceramic and crystalline Nd:YAG materials was investigated both experimentally and theoretically. The measured temperature agrees well with the theoretical simulation, and the maximum hoop stresses occur on the incident facet of the end-pumped rod at about √2 times of the pump beam radius w0, where the temperature gradient is the highest and the damage occurs first at this location. The fracture-limited laser intensity of ceramics was experimentally measured to be 6.

View Article and Find Full Text PDF

A high efficiency and high peak power picosecond (ps) mid-infrared optical parametric amplifier with a new nonlinear crystal BaGa(4)Se(7) pumped by a 30 ps 1064 nm Nd:YAG laser is demonstrated for the first time. The maximum photon conversion efficiency of 56% from 1064 nm to 3.9 μm idler has been achieved at the pump energy of ~1.

View Article and Find Full Text PDF

To investigate the effects of particle size, mPEG molecular weight, coating density and zeta potential of monomethoxyl poly(ethylene glycol)-poly(lactic-co-glycolic acid) (mPEG-PLGA) nanoparticles on their transportation across the rat nasal mucosa, mPEG-PLGA-NPs with different mPEG molecular weights (M(r) 1 000, 2 000) and coating density (0, 5%, 10%, 15%) and chitosan coated PLGA-NP, which loaded coumarin-6 as fluorescent marker, were prepared with the nanoprecipitation method and emulsion-solvent evaporation method, and determine their particle size, zeta potential, the efficiency of fluorescent labeling, in vitro leakage rate and the stability with the lysozyme were determined. The effects of physical and chemical properties on the transmucosal transport of the fluorescent nanoparticles were investigated by confocal laser scanning microscopy (CLSM). The result showed that the size of nanoparticles prepared with nanoprecipitation method varied between 120 and 200 nm; the size of nanoparticles prepared with emulsion-solvent evaporation method varied between 420 and 450 nm.

View Article and Find Full Text PDF

Objective: Methylnaltrexone (MNTX), a peripherally restricted opioid antagonist with mu-opioid receptor selectivity, can reduce opioid activity in the gastrointestinal tract while sparing the pain relief afforded by opioids. Since the bioavailability of oral MNTX is low, it is necessary to explore the oral formulations of MNTX that increase its bioavailability.

Materials And Methods: An MNTX-phosphatidylcholine complex (MNTX-PC) formulation was prepared.

View Article and Find Full Text PDF

A high-power 880-nm diode-directly-pumped passively mode-locked 1342 nm Nd:YVO₄ laser was demonstrated with a semiconductor saturable absorber mirror (SESAM). The laser mode radii in the laser crystal and on the SESAM were optimized carefully using the ABCD matrix formalism. An average output power of 2.

View Article and Find Full Text PDF