Publications by authors named "Li-Anne Liew"

This additive manufacturing benchmarking challenge asked the modelling community to predict the stress-strain behavior and fracture location and pathway of an individual meso-scale (gauge dimensions of approximately 200 μm thickness, 200 μm width, 1mm length) tension specimen that was excised from a wafer of nickel allow IN625 manufactured by laser powder bed fusion (L-PBF). The data used for the challenge questions and answers are provided in a public dataset (https://data.nist.

View Article and Find Full Text PDF

The elastic-plastic properties of mesoscale electrodeposited LIGA Ni alloy specimens are investigated as a function of specimen size, strain rate, and material composition. Two material compositions are studied: a high-strength fine-grained Ni-Fe alloy and a high-ductility coarse-grained Ni-Co alloy. The specimens have thicknesses of approximately 200 m and gauge widths ranging from 75 m to 700 m.

View Article and Find Full Text PDF

Photolithographically defined thin film Au dots were used as micro fiducial markers for digital image correlation (DIC), to enable two-dimensional strain measurement of 200 m-thick LIGA (Lithographie, Galvanformung, Abformung) nickel alloys. Due to the sensitivity of electrodeposited films' microstructure and properties on the processing conditions, characterization of LIGA mechanical properties continues to be necessary for microsystems commercialization. DIC offers advantages over laser-based strain measurement techniques but creating suitable speckle patterns on specimens with dimensions under a millimeter is challenging.

View Article and Find Full Text PDF

Two different LIGA electrodeposited nickel alloys displayed distinct fracture modes after meso-scale tensile testing. The Ni-Co alloy failed in a ductile manner, while the Ni-Fe alloy failed in a more brittle-appearing manner. Various factors affecting the fracture are discussed; it was determined that the fracture mode did not depend upon the strain rate but did depend upon the sample geometry.

View Article and Find Full Text PDF

Two-phase liquid-cooling technologies incorporating micro/nanostructured copper or silicon surfaces have been established as a promising thermal management solution to keep up with the increasing power demands of high power electronics. However, the reliability of nanometer-scale features of copper and silicon in these devices has not been well investigated. In this work, accelerated corrosion testing reveals that copper nanowires are not immune to corrosion in deaerated pure hot water.

View Article and Find Full Text PDF