Publications by authors named "Li-Ann Leow"

Sensorimotor adaptation alters mappings between motor commands and their predicted outcomes. Such remapping has been extensively studied in the visual domain, but the degree to which it occurs in modalities other than vision remains less well understood. Here, we manipulated the modality of reach target presentation to compare sensorimotor adaptation in response to perturbations of visual and auditory feedback location.

View Article and Find Full Text PDF

Given experience in cluttered but stable visual environments, our eye-movements form stereotyped routines that sample task-relevant locations, while not mixing-up routines between similar task-settings. Both dopamine signaling and mindfulness have been posited as factors that influence the formation of such routines, yet quantification of their impact remains to be tested in healthy humans. Over two sessions, participants searched through grids of doors to find hidden targets, using a gaze-contingent display.

View Article and Find Full Text PDF

Non-invasive brain stimulation techniques, such as transcranial direct current stimulation (tDCS), are popular methods for inducing neuroplastic changes to alter cognition and behaviour. One challenge for the field is to optimise stimulation protocols to maximise benefits. For this to happen, we need a better understanding of how stimulation modulates cortical functioning/behaviour.

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS), a form of non-invasive brain stimulation, has become an important tool for the study of in-vivo brain function due to its modulatory effects. Over the past two decades, interest in the influence of tDCS on behaviour has increased markedly, resulting in a large body of literature spanning multiple domains. However, the effect of tDCS on human performance often varies, bringing into question the reliability of this approach.

View Article and Find Full Text PDF

Although animal research implicates a central role for dopamine in motor skill learning, a direct causal link has yet to be established in neurotypical humans. Here, we tested if a pharmacological manipulation of dopamine alters motor learning, using a paradigm which engaged explicit, goal-directed strategies. Participants (27 females; 11 males; aged 18-29 years) first consumed either 100 mg of levodopa ( = 19), a dopamine precursor that increases dopamine availability, or placebo ( = 19).

View Article and Find Full Text PDF

The speed-accuracy trade-off (SAT), whereby faster decisions increase the likelihood of an error, reflects a cognitive strategy humans must engage in during the performance of almost all daily tasks. To date, computational modeling has implicated the latent decision variable of response caution (thresholds), the amount of evidence required for a decision to be made, in the SAT. Previous imaging has associated frontal regions, notably the left prefrontal cortex and the presupplementary motor area (pre-SMA), with the setting of such caution levels.

View Article and Find Full Text PDF

Noninvasive brain stimulation techniques, such as transcranial direct current stimulation (tDCS), show promise in treating a range of psychiatric and neurologic conditions. However, optimization of such applications requires a better understanding of how tDCS alters cognition and behavior. Existing evidence implicates dopamine in tDCS alterations of brain activity and plasticity; however, there is as yet no causal evidence for a role of dopamine in tDCS effects on cognition and behavior.

View Article and Find Full Text PDF

Sensorimotor adaptation, or the capacity to flexibly adapt movements to changes in the body or the environment, is crucial to our ability to move efficiently in a dynamic world. The field of sensorimotor adaptation is replete with rigorous behavioural and computational methods, which support strong conceptual frameworks. An increasing number of studies have combined these methods with electroencephalography (EEG) to unveil insights into the neural mechanisms of adaptation.

View Article and Find Full Text PDF

Background: Sensorimotor adaptation, or the capacity to adapt movement to changes in the moving body or environment, is a form of motor learning that is important for functional independence (e.g., regaining stability after slips or trips).

View Article and Find Full Text PDF

Rhythmic auditory stimulation (RAS) is a gait intervention in which gait-disordered patients synchronise footsteps to music or metronome cues. Musical 'groove', the tendency of music to induce movement, has previously been shown to be associated with faster gait, however, why groove affects gait remains unclear. One mechanism by which groove may affect gait is that of beat salience: music that is higher in groove has more salient musical beats, and higher beat salience might reduce the cognitive demands of perceiving the beat and synchronizing footsteps to it.

View Article and Find Full Text PDF

Sensorimotor adaptation is an important part of our ability to perform novel motor tasks (i.e., learning of motor skills).

View Article and Find Full Text PDF

Ageing has been suggested to affect sensorimotor adaptation by impairing explicit strategy use. Here we recorded electrophysiological (EEG) responses during visuomotor rotation in both young (n = 24) and older adults (n = 25), to investigate the neural processes that underpin putative age-related effects on adaptation. We measured the feedback related negativity (FRN) and the P3 in response to task-feedback, as electrophysiological markers of task error processing and outcome evaluation.

View Article and Find Full Text PDF

Traditional views of sensorimotor adaptation (i.e., adaptation of movements to perturbed sensory feedback) emphasize the role of automatic, implicit correction of sensory prediction errors.

View Article and Find Full Text PDF

Perturbations of sensory feedback evoke sensory prediction errors (discrepancies between predicted and actual sensory outcomes of movements), and reward prediction errors (discrepancies between predicted rewards and actual rewards). When our task is to hit a target, we expect to succeed in hitting the target, and so we experience a reward prediction error if the perturbation causes us to miss it. These discrepancies between intended task outcomes and actual task outcomes, termed "task errors," are thought to drive the use of strategic processes to restore success, although their role is incompletely understood.

View Article and Find Full Text PDF

Motor actions can be released much sooner than normal when the go-signal is of very high intensity (>100 dBa). Although statistical evidence from individual studies has been mixed, it has been assumed that sternocleidomastoid (SCM) muscle activity could be used to distinguish between two neural circuits involved in movement triggering. We summarized meta-analytically the available evidence for this hypothesis, comparing the difference in premotor reaction time (RT) of actions where SCM activity was elicited (SCM+ trials) by loud acoustic stimuli against trials in which it was absent (SCM- trials).

View Article and Find Full Text PDF

Anecdotal accounts suggest that individuals spontaneously synchronize their movements to the 'beat' of background music, often without intending to, and perhaps even without attending to the music at all. However, the question of whether intention and attention are necessary to synchronize to the beat remains unclear. Here, we compared whether footsteps during overground walking were synchronized to the beat when young healthy adults were explicitly instructed to synchronize (intention to synchronize), and were not instructed to synchronize (no intention) (Experiment 1: intention).

View Article and Find Full Text PDF

Neurophysiological and neuroimaging work suggests that the cerebellum is critically involved in sensorimotor adaptation. Changes in cerebellar function alter behaviour when compensating for sensorimotor perturbations, as shown by non-invasive stimulation of the cerebellum and studies involving patients with cerebellar degeneration. It is known, however, that behavioural responses to sensorimotor perturbations reflect both explicit processes (such as volitional aiming to one side of a target to counteract a rotation of visual feedback) and implicit, error-driven updating of sensorimotor maps.

View Article and Find Full Text PDF

When sensory feedback is perturbed, accurate movement is restored by a combination of implicit processes and deliberate reaiming to strategically compensate for errors. Here, we directly compare two methods used previously to dissociate implicit from explicit learning on a trial-by-trial basis: ) asking participants to report the direction that they aim their movements, and contrasting this with the directions of the target and the movement that they actually produce, and ) manipulating movement preparation time. By instructing participants to reaim without a sensory perturbation, we show that reaiming is possible even with the shortest possible preparation times, particularly when targets are narrowly distributed.

View Article and Find Full Text PDF

When we move, perturbations to our body or the environment can elicit discrepancies between predicted and actual outcomes. We readily adapt movements to compensate for such discrepancies, and the retention of this learning is evident as savings, or faster readaptation to a previously encountered perturbation. The mechanistic processes contributing to savings, or even the necessary conditions for savings, are not fully understood.

View Article and Find Full Text PDF

Rhythmic auditory stimulation (RAS) is a gait rehabilitation method in which patients synchronize footsteps to a metronome or musical beats. Although RAS with music can ameliorate gait abnormalities, outcomes vary, possibly because music properties, such as groove or familiarity, differ across interventions. To optimize future interventions, we assessed how initially familiar and unfamiliar low-groove and high-groove music affected synchronization accuracy and gait in healthy individuals.

View Article and Find Full Text PDF

Slowed gait in patients with Parkinson's disease (PD) can be improved when patients synchronize footsteps to isochronous metronome cues, but limited retention of such improvements suggest that permanent cueing regimes are needed for long-term improvements. If so, music might make permanent cueing regimes more pleasant, improving adherence; however, music cueing requires patients to synchronize movements to the "beat," which might be difficult for patients with PD who tend to show weak beat perception. One solution may be to use high-groove music, which has high beat salience that may facilitate synchronization, and affective properties, which may improve motivation to move.

View Article and Find Full Text PDF

The capacity to synchronize movements to the beat in music is a complex, and apparently uniquely human characteristic. Synchronizing movements to the beat requires beat perception, which entails prediction of future beats in rhythmic sequences of temporal intervals. Absolute timing mechanisms, where patterns of temporal intervals are encoded as a series of absolute durations, cannot fully explain beat perception.

View Article and Find Full Text PDF

Retention of motor adaptation is evident in savings, where initial learning improves subsequent learning, and anterograde interference, where initial learning impairs subsequent learning. Previously, we proposed that use-dependent movement biases induced by movement repetition contribute to anterograde interference, but not to savings. Here, we evaluate this proposal by limiting or extending movement repetition while stimulating the motor cortex (M1) with anodal transcranial direct current stimulation (tDCS), a brain stimulation technique known to increase use-dependent plasticity when applied during movement repetition.

View Article and Find Full Text PDF

Reinforcement and use-dependent plasticity mechanisms have been proposed to be involved in both savings and anterograde interference in adaptation to a visuomotor rotation (cf. Huang et al., 2011).

View Article and Find Full Text PDF

In motor adaptation, the occurrence of savings (faster relearning of a previously learned motor adaptation task) has been explained in terms of operant reinforcement learning (Huang et al. in Neuron 70(4):787-801, 2011), which is thought to associate an adapted motor command with outcome success during repeated execution of the adapted movement. There is some evidence for deficient savings in Parkinson's Disease (PD), which might result from deficient operant reinforcement processes.

View Article and Find Full Text PDF