Publications by authors named "Li Zan"

As an important member of global aquaculture, oysters (Crassostrea gigas) have significant economic value. With the development of commercial aquaculture, the frequent occurrence of diseases caused by Vibrio alginolyticus has become a hindrance to high-density aquaculture. Gill tissue, as an important component of immune system of the oysters, plays the key point in the face of invasion by foreign substances.

View Article and Find Full Text PDF

The study shows that plant growth regulators (PGRs) have estrogenic effects, which may disrupt the normal physiological functions of endogenous estrogen in organisms. This study used electrochemical methods to investigate the electrochemical behavior and estrogenic effects of PGRs gibberellic acid (GA), ethylene (ETH), and naphthalene acetic acid (NAA) on estrogen-free human breast cancer cells (MCF-7) cells when exposed individually or in combination. The results indicate that GA, ETH, and NAA, whether used alone or in combination, exhibit estrogenic effects on MCF-7 cells.

View Article and Find Full Text PDF

Objective: Copper, an essential metal element for humans, plays vital functions in cancer prognosis and immunity. SLC31A1, a high-affinity copper transporter, helps regulate copper homeostasis and has been implicated in tumor prognosis through mechanisms such as drug resistance, autophagy, ferroptosis, and cuproptosis. However, the role of SLC31A1 in breast cancer (BRCA) and its association with tumor immune infiltration has not been fully elucidated.

View Article and Find Full Text PDF

The golden cuttlefish (Sepia esculenta), a significant cephalopod in the Yellow and Bohai Seas of China, is highly esteemed for its exceptional medicinal and commercial value. The natural resources of the S. esculenta are currently facing depletion due to the ongoing environmental degradation and overfishing.

View Article and Find Full Text PDF

Breast cancer is the most common and lethal malignancy among women worldwide. Cuproptosis, a newly identified copper-dependent cell death, is closely associated with cancer development. However, its regulatory mechanisms in breast cancer are not well studied.

View Article and Find Full Text PDF

Thermal-responsive hydrogels are developed as ion-conductive switchs for energy storage devices, however, the molecule mechanism of switch on/off remains unclear. Here, poly(N-isopropylacrylamide-co-acrylamide) hydrogel is synthesized as a model material and nanodiamond (ND) based quantum sensing for phase change study is developed. First, micro-scale phase separation with cross-linked mesh structure after sol-gel transition is visualized in situ and water molecules are trapped by polymer chains and on a chemically "frozen" state.

View Article and Find Full Text PDF

Ferroptosis, a novel cell death mode driven by iron-dependent phospholipid (PL) peroxidation, has emerged as a promising therapeutic strategy for the treatments of cancer, cardiovascular diseases, and ischemic-reperfusion injury (IRI). PL peroxidation, the key process of ferroptosis, requires polyunsaturated fatty acid (PUFA)-containing PLs (PL-PUFAs) as substrates, undergoing a chain reaction with iron and oxygen. Cells prevent ferroptosis by maintaining a homeostatic equilibrium among substrates, processes, and detoxification of PL peroxidation.

View Article and Find Full Text PDF
Article Synopsis
  • Marine mollusks, particularly Pacific oysters, exhibit high tolerance to cadmium (Cd) exposure, yet the specific molecular responses to this stress are not fully understood.
  • A study involving transcriptomic and metabolomic analyses identified 2108 differentially expressed genes and 111 differentially expressed metabolites in oysters exposed to acute Cd stress for 96 hours.
  • The findings suggest alterations in oxidative stress responses and energy metabolism, with oysters enhancing their detoxification abilities through specific biological pathways like ABC transporters and glutathione metabolism.
View Article and Find Full Text PDF

Osteogenesis imperfecta (OI) is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding type I collagen. While it is well known that OI reflects defects in the activity of bone-forming osteoblasts, it is currently unclear whether OI also reflects defects in the many other cell types comprising bone, including defects in skeletal vascular endothelium or the skeletal stem cell populations that give rise to osteoblasts and whether correcting these broader defects could have therapeutic utility. Here, we find that numbers of skeletal stem cells (SSCs) and skeletal arterial endothelial cells (AECs) are augmented in Col1a2 mice, a well-studied animal model of moderate to severe OI, suggesting that disruption of a vascular SSC niche is a feature of OI pathogenesis.

View Article and Find Full Text PDF

The skeleton has been suggested to function as an endocrine organ controlling whole organism energy balance, however the mediators of this effect and their molecular links remain unclear. Here, utilizing Schnurri-3 (Shn3) mice with augmented osteoblast activity, we show Shn3mice display resistance against diet-induced obesity and enhanced white adipose tissue (WAT) browning. Conditional deletion of Shn3 in osteoblasts but not adipocytes recapitulates lean phenotype of Shn3mice, indicating this phenotype is driven by skeleton.

View Article and Find Full Text PDF

Near-infrared spectroscopy (NIR) has become an essential tool for non-destructive analysis in various fields, including aquaculture. This study presents a pioneering application of portable NIR spectrometers to analyze glycogen content in the gonadal tissues of the Pacific oyster (), marking the first instance of developing quantitative models for glycogen in tetraploid . The research also provides a comparative analysis with models for diploid and triploid oysters, underscoring the innovative use of portable NIR technology in aquaculture.

View Article and Find Full Text PDF

The ultrafine cellular structure promotes the extraordinary mechanical performance of metals manufactured by laser powder-bed-fusion (L-PBF). An in-depth understanding of the mechanisms governing the thermal stability of such structures is crucial for designing reliable L-PBF components for high-temperature applications. Here, characterizations and 3D discrete dislocation dynamics simulations are performed to comprehensively understand the evolution of cellular structures in 316L stainless steel during annealing.

View Article and Find Full Text PDF
Article Synopsis
  • Cancer evolves under pressure from its surrounding environment, but some tumors show neutral evolution where cancer cells don't differ in fitness after becoming malignant.
  • Researchers used computational modeling to demonstrate that negative frequency-dependent selection (NFDS) can create a tumor immune landscape resembling neutral evolution, contributing to high antigen diversity and immune evasion in certain tumors.
  • The study analyzed datasets from melanoma and non-small cell lung cancer, finding that NFDS is common and emphasizes the need for understanding this selection process to improve cancer immunotherapy strategies.
View Article and Find Full Text PDF

Tetraploid oysters are artificially produced oysters that do not exist in nature. The successful breeding of 100% triploid oysters resolved the difficulties of traditional drug-induced triploids, such as the presence of drug residues and a low triploid induction rate. However, little is known concerning the biochemical composition and nutrient contents of such tetraploids.

View Article and Find Full Text PDF

Over the years, oysters have faced recurring mass mortality issues during the summer breeding season, with infection emerging as a significant contributing factor. Tubules of gill filaments were confirmed to be in the hematopoietic position in , which produce hemocytes with immune defense capabilities. Additionally, the epithelial cells of oyster gills produce immune effectors to defend against pathogens.

View Article and Find Full Text PDF

The hepatopancreas is the biggest digestive organ in Amphioctopus fangsiao (A. fangsiao), but also undertakes critical functions like detoxification and immune defense. Generally, pathogenic bacteria or endotoxin from the gut microbiota would be arrested and detoxified in the hepatopancreas, which could be accompanied by the inevitable immune responses.

View Article and Find Full Text PDF

Malaria is a severe disease that presents a significant threat to human health. As resistance to current drugs continues to increase, there is an urgent need for new antimalarial medications. Aminoacyl-tRNA synthetases (aaRSs) represent promising targets for drug development.

View Article and Find Full Text PDF

The density and composition of lymphocytes infiltrating colon tumors serve as predictive factors for the clinical outcome of colon cancer. Our previous studies highlighted the potent anti-cancer properties of the principal compounds found in (YTE-17), attributing these effects to the regulation of multiple signaling pathways. However, knowledge regarding the mechanism and effect of YTE-17 in the prevention of colorectal cancer is limited.

View Article and Find Full Text PDF

Background: Recently, the osteogenic potential of Adiponectin-labeled adipogenic lineage progenitors (Adipoq-lineage progenitors) in bone marrow has been observed to support bone maintenance and repair. However, little is known about the function of Schnurri-3 (SHN3, also known as HIVEP3) in other mesenchymal lineage cells, apart from its negative regulation of bone formation on osteoblasts.

Method: In this study, we used single-cell RNA sequencing (scRNA-seq) profiling to demonstrate that Adipoq-lineage progenitors express higher levels of compared to other mesenchymal cell populations in mice and humans.

View Article and Find Full Text PDF

A rapid and sensitive assessment of the toxicity of oxygenated polycyclic aromatic hydrocarbons (OPAHs), widely distributed persistent organic pollutants in the environment, is crucial for human health. In this study, using high-performance liquid chromatography, the separation and detection of four purines, xanthine (X), guanine (G), adenine (A), and hypoxanthine (HX) in cells were performed. The aim was to evaluate the cytotoxicity of three OPAHs, namely 1,4-benzoquinone (1,4-BQ), 1,2-naphthoquinone (1,2-NQ) and 9,10-phenanthrenequinone (9,10-PQ), with higher environmental concentrations, from the perspective of purine nucleotide metabolism in human skin fibroblast cells (HFF-1).

View Article and Find Full Text PDF

Loss of refreshment in nucleus pulposus (NP) cellularity leads to intervertebral disc (IVD) degeneration. Nevertheless, the cellular sequence of NP cell differentiation remains unclear, although an increasing body of literature has identified markers of NP progenitor cells (NPPCs). Notably, due to their fragility, the physical enrichment of NP-derived cells has limited conventional transcriptomic approaches in multiple studies.

View Article and Find Full Text PDF

Ferroptosis, a form of regulated cell death that is driven by iron-dependent phospholipid peroxidation, has been implicated in multiple diseases, including cancer, degenerative disorders and organ ischaemia-reperfusion injury (IRI). Here, using genome-wide CRISPR-Cas9 screening, we identified that the enzymes involved in distal cholesterol biosynthesis have pivotal yet opposing roles in regulating ferroptosis through dictating the level of 7-dehydrocholesterol (7-DHC)-an intermediate metabolite of distal cholesterol biosynthesis that is synthesized by sterol C5-desaturase (SC5D) and metabolized by 7-DHC reductase (DHCR7) for cholesterol synthesis. We found that the pathway components, including MSMO1, CYP51A1, EBP and SC5D, function as potential suppressors of ferroptosis, whereas DHCR7 functions as a pro-ferroptotic gene.

View Article and Find Full Text PDF

A new species of Orchidaceae, , from Xichou County, Yunnan, China, is described and illustrated. The novelty is close to , , and , but differs from them by having a distinct, fleshy anterior callus with a deeply lobed apex at the base of the labellum and lateral lobes of labellum reflexed and facing outward.

View Article and Find Full Text PDF

Steel automotive wheel rims are subject to wear and tear, down to the end of their service life. Manufacturers use standard destructive tests to determine the probable lifetime of the car wheel rim. With this approach, to predict the remaining use time, it is necessary to know the initial parameters of the wheel rim, actual mileage, and its use characteristics, which is difficult information to obtain in the real world.

View Article and Find Full Text PDF