Herein we present a lab-chip device for highly efficient and rapid detection of circulating tumor cells (CTCs) from whole blood samples. The device utilizes a microfabricated silicon microsieve with a densely packed pore array (10(5) pores per device) to rapidly separate tumor cells from whole blood, utilizing the size and deformability differences between the CTCs and normal blood cells. The whole process, including tumor cell capture, antibody staining, removal of unwanted contaminants and immunofluorescence imaging, was performed directly on the microsieve within an integrated microfluidic unit, interconnected to a peristaltic pump for fluid regulation and a fluorescence microscope for cell counting.
View Article and Find Full Text PDFMutation and polymorphism detection is of increasing importance for a variety of medical applications, including identification of cancer biomarkers and genotyping for inherited genetic disorders. Among various mutation-screening technologies, enzyme mismatch cleavage (EMC) represents a great potential as an ideal scanning method for its simplicity and high efficiency, where the heteroduplex DNAs are recognized and cleaved into DNA fragments by mismatch-recognizing nucleases. Thereby, the enzymatic cleavage activities of the resolving nucleases play a critical role for the EMC sensitivity.
View Article and Find Full Text PDFThis chapter presents TmPrime, a computer program to design oligonucleotide for both ligase chain reaction (LCR)- and polymerase chain reaction (PCR)-based de novo gene synthesis. The program divides a long input DNA sequence based on user-specified melting temperatures and assembly conditions, and dynamically optimizes the length of oligonucleotides to achieve homologous melting temperatures. The output reports the melting temperatures, oligonucleotide sequences, and potential formation of secondary structures in a PDF file, which will be sent to the user via e-mail.
View Article and Find Full Text PDFHere we present a simple, highly efficient, universal automatic kinetics switch (AKS) gene synthesis method that enables synthesis of DNA up to 1.6kbp from 1nM oligonucleotide with just one polymerase chain reaction (PCR) process. This method eliminates the interference between the PCR assembly and amplification in one-step gene synthesis and simultaneously maximizes the amplification of emerged desired DNA by using a pair of flanked primers.
View Article and Find Full Text PDF