Flavin adenine dinucleotide (FAD), serving as a light-absorbing coenzyme factor, can undergo conformationally isomeric complexation within different enzymes to form various enzyme-coenzyme complexes, which exhibit photocatalytic functions that play a crucial role in physiological processes. Constructing an artificial photofunctional system using FAD or its derivatives can not only develop biocompatible photocatalytic systems with excellent activities but also further enhance our understanding of the role of FAD in biological systems. Here, we demonstrate a supramolecular approach for constructing an artificial enzyme-coenzyme-type host-guest complex with photoinduced catalytic function in water.
View Article and Find Full Text PDFMachine learning and data-driven methods have attracted a significant amount of attention for the acceleration of the design of molecules and materials. In this study, a material design protocol based on multimode modeling that combines literature modeling, numerical data collection, textual descriptor design, genetic modeling, experimental validation, first-principles calculation, and theoretical efficiency calculation is proposed, with a case study on designing compatible complex solvent molecules for a halide perovskite film, which is notorious for optoelectronic deactivation under hostile conditions, especially in water. In the multimode modeling design process, the textual descriptors play the central role and store rich literature scientific knowledge, which starts from the construction of a high-dimension literature model based on scientific articles and is realized by a genetic algorithm for materials predictions.
View Article and Find Full Text PDFBackground: Migraine is a common primary headache that has a significant impact on patients' quality of life. The co-occurrence of migraine and depression is frequent, resulting in more complex symptoms and a poorer prognosis. The evidence suggests that depression and migraine comorbidity share a polygenic genetic background.
View Article and Find Full Text PDFBackground: FAR1/FHY3 transcription factors are derived from transposase, which play important roles in light signal transduction, growth and development, and response to stress by regulating downstream gene expression. Although many FAR1/FHY3 members have been identified in various species, the genes in maize are not well characterized and their function in drought are unknown.
Method: The FAR1/FHY3 family in the maize genome was identified using PlantTFDB, Pfam, Smart, and NCBI-CDD websites.
In biological systems, nucleosides play crucial roles in various physiological processes. In this study, we designed and synthesized four achiral anthracene-based tetracationic nanotubes (1-4) as artificial hosts and chiroptical sensors for nucleosides in aqueous media. Notably, different nanotubes exhibit varied chirality sensing on circular dichroism (CD)/circularly polarized luminescence (CPL) spectra through the host-guest complexation, which prompted us to explore the factors influencing their chiroptical responses.
View Article and Find Full Text PDFChirality transfer for natural chiral biomolecules can reveal the indispensable role of chiral structures in life and can be used to develop the chirality-sensing biomolecular recognition. Here, we report the synthesis and characterization of a series of achiral supramolecular organic frameworks (SOF-1, SOF-2, and SOF-3), constructed from cucurbit[8]uril (CB[8]) and tetraphenylethene (TPE) derivatives (1, 2, and 3), respectively, as chirality-sensing platforms to explore their chirality transfer mechanism for peptides in water. Given the right-handed () and left-handed () rotational conformation of TPE units and the selective binding of CB[8] to aromatic amino acids, these achiral SOFs can be selectively triggered in water by peptides containing N-terminal tryptophan (W) and phenylalanine (F) residues into their - or -rotational conformation, exhibiting significantly different circular dichroism (CD) spectra.
View Article and Find Full Text PDFOvarian cancer is the tumor with the highest mortality among gynecological malignancies. Studies have confirmed that paclitaxel chemoresistance is associated with increased infiltration of tumor-associated macrophages (TAMs) in the microenvironment. Colony-stimulating factor 1 (CSF-1) receptor (CSF-1R) plays a key role in regulating the number and differentiation of macrophages in certain solid tumors.
View Article and Find Full Text PDFActin-interacting proteins are important molecules for filament assembly and cytoskeletal signaling within vascular endothelium. Disruption in their interactions causes endothelial pathogenesis through redox imbalance. Actin filament redox regulation remains largely unexplored, in the context of pharmacological treatment.
View Article and Find Full Text PDFBackground: Ovarian reactivity to gonadotrophin stimulation varies, and individual adjustments to the timing and dose of gonadotrophin-releasing hormone (GnRH) antagonist administration are necessary to prevent excessive increases and decreases in luteinizing hormone (LH) levels in patients with different ovarian response following the GnRH antagonist (GnRH-A) protocol. The present study aims to investigate optimal LH suppression thresholds for patients with normal ovarian response (NOR), high ovarian response (HOR), and poor ovarian response (POR) following the GnRH-A protocol respectively.
Methods: A total of 865 in vitro fertilization (IVF) cycles using a flexible or fixed GnRH-A protocol were included.
S100 calcium-binding protein A16 (S100A16) has previously been reported to play a role in tumor cells. Nevertheless, the role that S100A16 played in nephroblastoma cells remains obscure. The expression of S100A16 and DEPDC1 were detected via RT-q PCR and western blotting.
View Article and Find Full Text PDFGranulosa cell apoptosis contributes to the occurrence of diminished ovarian reserve (DOR). HOXA1, belonging to the HOX gene family, is involved in regulating cancer cell apoptosis. However, whether HOXA1 participates in the granulosa cell apoptosis in DOR patients remains to be elucidated.
View Article and Find Full Text PDFN-methyladenosine (mA) maintains maternal RNA stability in oocytes. One regulator of mA, ALKBH5, reverses mA deposition and is essential in RNA metabolism. However, the specific role of ALKBH5 in oocyte maturation remains elusive.
View Article and Find Full Text PDFBackground: Polycystic ovary syndrome (PCOS) is a common reproductive, neuroendocrine, and metabolic disorder in women of reproductive age that affects up to 5-10% of women of reproductive age. The aetiology of follicle development arrest and critical issues regarding the abnormal follicular development in PCOS remain unclear. The present study aims to systematically evaluate granulosa cell whole-transcriptome sequencing data to gain more insights into the transcriptomic landscape and molecular mechanism of PCOS in China.
View Article and Find Full Text PDFChiral induction by natural biomolecules can reveal the indispensable role of chiral structures in life and can be used to develop the chirality-sensing biomolecular recognition. Here, we present the synthesis and characterization of an achiral supramolecular organic framework (SOF-1) constructed from cucurbit[8]uril (CB[8]) and hexaphenylbenzene (HPB) derivative (1) in water. Due to the propeller-like rotational chiral conformation of HPB units and the specific recognition properties of CB[8], SOF-1 demonstrates chiral adaptive induction in water when interacting with the N-terminal Trp-/Phe-containing dipeptides including L-TrpX and L-PheX (X is an amino acid residue), respectively, exhibiting contrasting circular dichroism (CD) and circularly polarized luminescence (CPL) spectra.
View Article and Find Full Text PDFBackground: Unexplained recurrent spontaneous abortion (URSA) is one of the most challenging conditions frustrates women of childbearing age profoundly. The gene expression patterns and biological characteristics of placental villus in patients with URSA remain largely unknown. The aim of our study was to identify potential lncRNAs as well as their action mechanisms in URSA.
View Article and Find Full Text PDFBacterial lipopolysaccharide (LPS) is a toxic stimulant to macrophage inflammation. Inflammation intersects cell metabolism and often directs host immunopathogenesis stress. We aim here at pharmacological discovering of formononetin (FMN) action, to which anti-inflammatory signaling spans across immune membrane receptors and second messenger metabolites.
View Article and Find Full Text PDFA series of cyclometalated Ir(III) complexes with morpholine and piperazine groups are designed as dual photosensitizers and photothermal agents for more efficient antitumor phototherapy via infrared low-power laser. Their ground and excited state properties, as well as the structural effect on their photophysical and biological properties, are investigated by spectroscopic, electrochemical, and quantum chemical theoretical calculations. They target mitochondria in human melanoma tumor cells and trigger apoptosis related to mitochondrial dysfunction upon irradiation.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) uses a combination of photosensitizers (PSs), light sources, and reactive oxygen species (ROS) to damage only the desired target and keep normal tissues from being hurt. The dark cytotoxicity (chemotoxicity) of PSs, leading to whole-body damage in the absence of irradiation, is a major limiting factor in PDT. How to simultaneously increase ROS generation and decrease dark cytotoxicity is an essential challenge that must be resolved in PS research.
View Article and Find Full Text PDFSequence-specific recognition of peptides and proteins by synthetic compounds or systems remains a huge challenge in biocompatible media. Here, we report the chiral adaptive recognition (CAR) with sequence specificity of aromatic dipeptides in a purely aqueous solution using an achiral tetraphenylethene-based octacationic cage (1) as both a molecular receptor and chiroptical sensor. 1 can selectively bind and dimerize aromatic dipeptides to form 1 : 2 host-guest complexes with high binding affinity (>10 M), especially up to ∼10 M for TrpTrp.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2023
Recently, layered BeN as a novel Dirac semimetal has been fabricated (M. Bykov, T. Fedotenko, S.
View Article and Find Full Text PDFSignal Transduct Target Ther
January 2023
Head and neck cancer (HNC) is malignant, genetically complex and difficult to treat and is the sixth most frequent cancer, with tobacco, alcohol and human papillomavirus being major risk factors. Based on epigenetic data, HNC is remarkably heterogeneous, and treatment remains challenging. There is a lack of significant improvement in survival and quality of life in patients with HNC.
View Article and Find Full Text PDFThe PI3K/AKT/mTOR and RAF/MEK/ERK pathways are commonly activated by mutations and chromosomal translocation in vital targets. The PI3K/AKT/mTOR signaling pathway is dysregulated in nearly all kinds of neoplasms, with the component in this pathway alternations. RAF/MEK/ERK signaling cascades are used to conduct signaling from the cell surface to the nucleus to mediate gene expression, cell cycle processes and apoptosis.
View Article and Find Full Text PDFChem Commun (Camb)
December 2022
A tetraphenylethene-based hexacationic molecular cage (1) with an open cavity was synthesized. 1 exhibited 1 : 2 or 1 : 1 host-guest recognition for two nicotinamide adenine dinucleotide molecules (NADH and NAD) with different CD and fluorescence responses in water.
View Article and Find Full Text PDF