Publications by authors named "Li Ping Ou"

Metabolic reprogramming contributes to the progression and prognosis of various kidney diseases. Glutamine is the most abundant free amino acid in the body and participates in more metabolic processes than other amino acids. Altered glutamine metabolism is a prominent feature in different kidney diseases.

View Article and Find Full Text PDF

Increased expression of histone deacetylases (HDACs) affiliated to the epigenetic regulation is common aberration in prostate cancer (PCa). We have confirmed that hepatocyte cell adhesion molecule (hepaCAM), acting as a tumor suppressor gene, is rarely expressed in PCa previously, However, the mechanisms of which is still unknown. The level of histone acetylation reportedly may involve anti-oncogene transcription and expression.

View Article and Find Full Text PDF

We previously established that hepatocyte cell adhesion molecule (hepaCAM), a typical structure of immunoglobulin (Ig)-like adhesion molecules, inhibited the proliferation and the progression of cultured human bladder cancer cells. As increasing evidence reveals that aberrant activation of canonical Wnt pathway is involved in the pathogenesis of bladder cancer, and β-catenin serves as a pivotal molecule of Wnt pathway. Then, we explored whether the anti-proliferation effect of hepaCAM was associated with Wnt/β-catenin pathway in human bladder cancer cells.

View Article and Find Full Text PDF

Phospholipase Cε (PLCε), a downstream effector of small GTPase superfamily, has been identified to play a crucial role in tumorigenesis. Previously, our studies have showed that PLCε promotes proliferation of renal cell carcinoma (RCC) cells. However, the molecular mechanisms by which PLCε enhances the survival phenotype of RCC cells are still not fully instructed.

View Article and Find Full Text PDF

Although PLCε has been verified to enhance bladder cancer cell invasion, the signaling pathways responsible for this remain elusive. Protein kinase C (PKCα/β), which is involved in cancer development and progression, has been demonstrated to be activated by PLCε. However, the roles of PKCα/β in PLCε-mediated bladder carcinoma cell invasion and migration have not been clearly identified.

View Article and Find Full Text PDF