Polyethylene terephthalate has been widely used in the packaging industry. Degraded PET micro(nano)plastics could pose public health concerns following release into various environments. This study focuses on PET degradation under ultraviolet radiation using the NIST SPHERE facility at the National Institute of Standards and Technology in saturated humidity (i.
View Article and Find Full Text PDFPolyethylene terephthalate has been widely used in the packaging industry. Degraded PET micro-nano plastics could pose public health concerns following release into various environments. This study focuses on PET degradation under ultraviolet radiation using the NIST SPHERE facility at the National Institute of Standards and Technology in saturated humidity (i.
View Article and Find Full Text PDFWhether a tire crumb rubber (TCR) playground would expose children to potentially harmful chemicals such as heavy metals is an open question. The released metals available for pickup on the surface of TCR tiles was studied by accelerated 2-year aging of the TCRs in the NIST-SPHERE (National Institute of Standards and Technology Simulated Photodegradation via High Energy Radiant Exposure). The dermal contact was mimicked by a method of composite surface wiping from US Environmental Protection Agency throughout the weathering process.
View Article and Find Full Text PDFBicontinuous porous structures through colloidal assembly realized by non-equilibrium process is crucial to various applications, including water treatment, catalysis and energy storage. However, as non-equilibrium structures are process-dependent, it is very challenging to simultaneously achieve reversibility, reproducibility, scalability, and tunability over material structures and properties. Here, a novel solvent segregation driven gel (SeedGel) is proposed and demonstrated to arrest bicontinuous structures with excellent thermal structural reversibility and reproducibility, tunable domain size, adjustable gel transition temperature, and amazing optical properties.
View Article and Find Full Text PDFThe past decade has seen increased research interest in studying bicontinuous structures formed via colloidal self-assembly due to their many useful applications. A new type of colloidal gel, solvent segregation-driven gel (SeedGel), has been recently demonstrated as an effective approach to arrest bicontinuous structures with unique and intriguing properties, such as thermoreversibility, structural reproducibility, and sensitive temperature response. Here, using a model system with silica particles in the 2,6-lutidine/water binary solvent, we investigate the factors controlling the domain size of a SeedGel system by varying the particle concentration, solvent ratio, and quenching protocol.
View Article and Find Full Text PDFPigments with nanoscale dimensions are added to exterior coatings to achieve desirable color and gloss properties. The present study compared the performance, degradation, and release behavior of an acrylic coating that was pigmented by a nanoform of Cu-phthalocyanine after both natural (i.e.
View Article and Find Full Text PDFNanocoatings have numerous potential applications in the indoor environment, such as flooring finishes with increased scratch- and wear-resistance. However, given concerns about the potential environmental and human health effects of nanomaterials, it is necessary to develop standardized methods to quantify nanomaterial release during use of these products. One key choice for mechanical wear studies is the abrasion wheel.
View Article and Find Full Text PDFThe photodegradation of polymers poses a serious challenge to their outdoor application, and results in significant financial loss due to early or unexpected system failure. A better understanding of their degradation kinetics aids the improvement of materials and systems. However, most work to date on many polymeric materials focuses on only one or a few exposure conditions which are pertinent to typical environmental ambients.
View Article and Find Full Text PDFUnderstanding the responses of materials to environmental variables is essential for performing meaningful accelerated weathering and service life prediction. Samples of polycarbonate--resorcinol polyarylate copolymer (RPA), poly(acrylonitrile--butadiene--styrene) (ABS), and two polycarbonate copolymers with silicone or aliphatic diacids were exposed in the NIST (National Institute of Standards and Technology) SPHERE (Simulated Photodegradation via High Energy Radiant Exposure) to determine the effects of ultraviolet intensity (UV irradiance), temperature, relative humidity (RH), and UV wavelength on yellowing and gloss loss and were compared to other aromatic polymers. All showed proportional response to irradiance (i.
View Article and Find Full Text PDFPolym Degrad Stab
January 2019
Samples of polycarbonate (PC), poly(butylene terephthalate) (PBT), a PC/PBT blend, and poly(styrene--acrylonitrile) (SAN), all containing 3% TiO (by mass), were exposed in the NIST (National Institutes of Standards and Technology) SPHERE (Simulated Photodegradation via High Energy Radiant Exposure) to determine the effects of UV intensity (irradiance), temperature, relative humidity (RH), and UV wavelength on yellowing and gloss loss. There was no effect of irradiance, such that the samples obeyed reciprocity and doubling the irradiance doubled the rate of degradation. The activation energy for yellowing was determined to be ≈ 20 kJ/mol for PC, PC/PBT, and SAN and ≈ 16 kJ/mol for PBT.
View Article and Find Full Text PDFAs original equipment manufacturers (OEMs) strive to deliver improved coating performance with a sustainable footprint, opportunities for innovation are emerging, particularly on improving mechanical properties, appearance, and solids content. Resistance to scratch and mar damage is one of the key performance attributes that has been emphasized by both OEMs and consumers to maintain a vehicle's appearance and corrosion resistance over its service lifetime. Fundamental methodologies including instrumented scratch measurements at multiple size scales are used in this work as part of a product development strategy to better understand the scratch and mar behavior of automotive topcoats.
View Article and Find Full Text PDFConcomitant with the development of polymer nanocomposite (PNC) technologies across numerous industries is an expanding awareness of the uncertainty with which engineered nanoparticles embedded within these materials may be released into the external environment, particularly liquid media. Recently there has been an interest in evaluating potential exposure to nanoscale fillers from PNCs, but existing studies often rely upon uncharacterized, poor quality, or proprietary materials, creating a barrier to making general mechanistic conclusions about release phenomena. In this study we employed semiconductor nanoparticles (quantum dots, QDs) as model nanofillers to quantify potential release into liquid media under specific environmental conditions.
View Article and Find Full Text PDFThe morphological characterization of polymer nanocomposites over multiple length scales is a fundamental challenge. Here, we report a technique for high-throughput monitoring of interface and dispersion in polymer nanocomposites based on Förster resonance energy transfer (FRET). Nanofibrillated cellulose (NFC), fluorescently labeled with 5-(4,6-dichlorotriazinyl)-aminofluorescein (FL) and dispersed into polyethylene (PE) doped with Coumarin 30 (C30), is used as a model system to assess the ability of FRET to evaluate the effect of processing on NFC dispersion in PE.
View Article and Find Full Text PDFAims: To determine if commercial sunscreens contain distinct nanoparticles and to evaluate analytical methods for their ability to detect and characterize nanoparticles in unmodified topical products using commercial sunscreens as a model.
Methods: A total of 20 methods were evaluated for their ability to detect and characterize nanoparticles in unmodified commercial sunscreens.
Results: Variable-pressure scanning-electron microscopy, atomic-force microscopy, laser-scanning confocal microscopy and X-ray diffraction were found to be viable and complementary methods for detecting and characterizing nanoparticles in sunscreens.