Publications by authors named "Li KuanChing"

Article Synopsis
  • Cryptography is vital for ensuring confidentiality, information integrity, authentication, and non-repudiation in both personal and national security contexts.
  • The rise of quantum computing poses a threat to traditional encryption methods, leading to the exploration of new defense techniques such as quantum key distribution and post-quantum encryption algorithms.
  • This study reviews post-quantum encryption, focusing on its background, the Kyber algorithm, and the challenges and prospects within this innovative field.
View Article and Find Full Text PDF

With the rapid growth in wireless communication and IoT technologies, Radio Frequency Identification (RFID) is applied to the Internet of Vehicles (IoV) to ensure the security of private data and the accuracy of identification and tracking. However, in traffic congestion scenarios, frequent mutual authentication increases the overall computing and communication overhead of the network. For this reason, in this work, we propose a lightweight RFID security fast authentication protocol for traffic congestion scenarios, designing an ownership transfer protocol to transfer access rights to vehicle tags in non-congestion scenarios.

View Article and Find Full Text PDF

Federated learning is a machine learning method that can break the data island. Its inherent privacy-preserving property has an important role in training medical image models. However, federated learning requires frequent communication, which incur high communication costs.

View Article and Find Full Text PDF

Fake review detection has the characteristics of huge stream data processing scale, unlimited data increment, dynamic change, and so on. However, the existing fake review detection methods mainly target limited and static review data. In addition, deceptive fake reviews have always been a difficult point in fake review detection due to their hidden and diverse characteristics.

View Article and Find Full Text PDF

Drug target interaction prediction is a crucial stage in drug discovery. However, brute-force search over a compound database is financially infeasible. We have witnessed the increasing measured drug-target interactions records in recent years, and the rich drug/protein-related information allows the usage of graph machine learning.

View Article and Find Full Text PDF

Background: Isaacs' syndrome is a peripheral nerve hyperexcitability (PNH) syndrome due to peripheral motor nerve instability. Acquired Isaacs' syndrome is recognized as a paraneoplastic autoimmune disease with possible pathogenic voltage-gated potassium channel (VGKC) complex antibodies. However, the longitudinal correlation between clinical symptoms, VGKC antibodies level, and drug response is still unclear.

View Article and Find Full Text PDF

Federated learning () is a promising decentralized deep learning technology, which allows users to update models cooperatively without sharing their data. is reshaping existing industry paradigms for mathematical modeling and analysis, enabling an increasing number of industries to build privacy-preserving, secure distributed machine learning models. However, the inherent characteristics of have led to problems such as privacy protection, communication cost, systems heterogeneity, and unreliability model upload in actual operation.

View Article and Find Full Text PDF

The Time-based One-Time Password (TOTP) algorithm is commonly used for two-factor authentication. In this algorithm, a shared secret is used to derive a One-Time Password (OTP). However, in TOTP, the client and the server need to agree on a shared secret (i.

View Article and Find Full Text PDF

The original pattern recognition and classification of crop diseases needs to collect a large amount of data in the field and send them next to a computer server through the network for recognition and classification. This method usually takes a long time, is expensive, and is difficult to carry out for timely monitoring of crop diseases, causing delays to diagnosis and treatment. With the emergence of edge computing, one can attempt to deploy the pattern recognition algorithm to the farmland environment and monitor the growth of crops promptly.

View Article and Find Full Text PDF

Recently, brain-machine interfacing is very popular that link humans and artificial devices through brain signals which lead to corresponding mobile application as supplementary. The Android platform has developed rapidly because of its good user experience and openness. Meanwhile, these characteristics of this platform, which cause the amazing pace of Android malware, pose a great threat to this platform and data correction during signal transmission of brain-machine interfacing.

View Article and Find Full Text PDF

The trustworthiness of data is vital data analysis in the age of big data. In cyber-physical systems, most data is collected by sensors. With the increase of sensors as Internet of Things (IoT) nodes in the network, the security risk of data tampering, unauthorized access, false identify, and others are overgrowing because of vulnerable nodes, which leads to the great economic and social loss.

View Article and Find Full Text PDF

The Distance Vector-Hop (DV-Hop) algorithm is the most well-known range-free localization algorithm based on the distance vector routing protocol in wireless sensor networks; however, it is widely known that its localization accuracy is limited. In this paper, DEIDV-Hop is proposed, an enhanced wireless sensor node localization algorithm based on the differential evolution (DE) and improved DV-Hop algorithms, which improves the problem of potential error about average distance per hop. Introduced into the random individuals of mutation operation that increase the diversity of the population, random mutation is infused to enhance the search stagnation and premature convergence of the DE algorithm.

View Article and Find Full Text PDF

Task assignment is a crucial problem in wireless sensor networks (WSNs) that may affect the completion quality of sensing tasks. From the perspective of global optimization, a transmission-oriented reliable and energy-efficient task allocation (TRETA) is proposed, which is based on a comprehensive multi-level view of the network and an evaluation model for transmission in WSNs. To deliver better fault tolerance, TRETA dynamically adjusts in event-driven mode.

View Article and Find Full Text PDF

Node position information is critical in wireless sensor networks (WSN). However, existing positioning algorithms commonly have the issue of low positioning accuracy due to noise interferences in communication. Hence, proposed in this paper is an iterative positioning algorithm based on distance correction to improve the positioning accuracy of target nodes in WSNs, with contributions including (1) a log-distance distribution model of received signal strength indication (RSSI) ranging which is built and from which is derived a noise impact factor based on the model, (2) the initial position coordinates of the target node obtained using a triangle centroid localization algorithm, via which the distance deviation coefficient under the influence of noise is calculated, and (3) the ratio of the distance measured by the log-distance distribution model to the median distance deviation coefficient which is taken as the new distance between the target node and the anchor node.

View Article and Find Full Text PDF

Device-to-device (D2D) communication is a promising technique for direct communication to enhance the performance of cellular networks. In order to improve the system throughput and utilization of spectrum resource, a resource allocation mechanism for D2D underlaid communication is proposed in this paper where D2D pairs reuse the resource blocks (RBs) of cellular uplink users, adopting a matching matrix to disclose the results of resource allocation. Details of the proposed resource allocation mechanism focused are listed as: the transmit power of D2D pairs are determined by themselves with the distributed power control method, and D2D pairs are assigned to different clusters that are the intended user sets of RBs, according to the threshold of the signal-to-interference-plus-noise ratio (SINR).

View Article and Find Full Text PDF

Rapid advances in the Internet-of-Things (IoT) have exposed the underlying hardware devices to security threats. As the major component of hardware devices, the integrated circuit (IC) chip also suffers the threat of illegal, malicious attacks. To protect against attacks and vulnerabilities of a chip, a credible authentication is of fundamental importance.

View Article and Find Full Text PDF