Publications by authors named "Li Hsien Lin"

Background: The outer mitochondrial Rho GTPase 1, MIRO1, mediates mitochondrial motility within cells, but implications for vascular smooth muscle cell (VSMC) physiology and its roles invascular diseases, such as neointima formation following vascular injury are widely unknown.

Methods: An in vivo model of selective Miro1 deletion in VSMCs was generated, and the animals were subjected to carotid artery ligation. The molecular mechanisms relevant to VSMC proliferation were then explored in explanted VSMCs by imaging mitochondrial positioning and cristae structure and assessing the effects on ATP production, metabolic function and interactions with components of the electron transport chain (ETC).

View Article and Find Full Text PDF

Background: The pursuit of selective therapeutic delivery to target tissue types represents a key goal in the treatment of a range of adverse health issues, including diseases afflicting the heart. The development of new cardiac-specific ligands is a crucial step towards effectively targeting therapeutics to the heart.

Methods: Utilizing an and SELEX approaches, we enriched a library of 2'-fluoro modified aptamers for ventricular cardiomyocyte specificity.

View Article and Find Full Text PDF

Despite improvements in B cell acute lymphoblastic leukemia (B-ALL) treatment, a significant number of patients experience relapse of the disease, resulting in poor prognosis and high mortality. One of the drawbacks of current B-ALL treatments is the high toxicity associated with the non-specificity of chemotherapeutic drugs. Targeted therapy is an appealing strategy to treat B-ALL to mitigate these toxic off-target effects.

View Article and Find Full Text PDF

Current strategies to prevent restenosis following endovascular treatment include the local delivery of anti-proliferative agents to inhibit vascular smooth muscle cell (VSMC) proliferation and migration. These agents, not specific to VSMCs, are deposited on the luminal surface and therefore target endothelial cells and delay vascular healing. Cell-targeted therapies, (e.

View Article and Find Full Text PDF

The development of multiple organ dysfunction syndrome (MODS) following infection or tissue injury is associated with increased patient morbidity and mortality. Extensive cellular injury results in the release of nuclear proteins, of which histones are the most abundant, into the circulation. Circulating histones are implicated as essential mediators of MODS.

View Article and Find Full Text PDF

By determining its cellular localization in the nucleus tractus solitarii (NTS), we sought anatomical support for a putative physiological role for acid-sensing ion channel Type 1 (ASIC1) in chemosensitivity. Further, we sought to determine the effect of a lesion that produces gliosis in the area. In rats, we studied ASIC1 expression in control tissue with that in tissue with gliosis, which is associated with acidosis, after saporin lesions.

View Article and Find Full Text PDF

Saporin (SAP) or SAP conjugates injected into the nucleus tractus solitarii (NTS) of rats kill astrocytes. When injected in its unconjugated form, SAP produces no demonstrable loss of or damage to local neurons. However bilateral injections of SAP significantly attenuate responses to activation of baroreceptor reflexes that are mediated by transmission of signals through glutamate receptors in the NTS We tested the hypothesis that SAP would reduce cardiovascular responses to activation of NTS glutamate receptors despite its recognized ability to spare local neurons while killing local astrocytes.

View Article and Find Full Text PDF

Extracellular acidification activates a family of proteins known as acid-sensing ion channels (ASICs). One ASIC subtype, ASIC type 1 (ASIC1), may play an important role in synaptic plasticity, memory, fear conditioning and ischemic brain injury. ASIC1 is found primarily in neurons, but one report showed its expression in isolated mouse cerebrovascular cells.

View Article and Find Full Text PDF

We have shown that an antibody to dopamine-β-hydroxylase conjugated with saporin (anti-DBH-SAP) damages catecholamine neurons in the nucleus tractus solitarii (NTS) of rat, attenuates arterial baroreflexes, and leads to lability of arterial blood pressure, damage to cardiac myocytes, and, in some animals, sudden death. However, others have shown that injection of 6-hydroxydopamine (6-OHDA), a toxin devoid of saporin, also damaged NTS catecholamine neurons but did not lead to these cardiovascular changes. We found similar cardiovascular changes after injecting a different SAP conjugate to target NTS neurons with neurokinin (NK1) receptors.

View Article and Find Full Text PDF

In efforts to assess baroreflex and cardiovascular responses in rats in which substance P (SP) or catecholamine transmission had been eliminated we studied animals after bilateral injections into the nucleus tractus solitarii (NTS) of SP or stabilized SP (SSP) conjugated to saporin (SP-SAP or SSP-SAP respectively) or SAP conjugated to an antibody to dopamine-β-hydroxylase (anti-DBH-SAP). We found that SP- and SSP-SAP eliminated NTS neurons that expressed the SP neurokinin-1 receptor (NK1R) while anti-DBH-SAP eliminated NTS neurons expressing tyrosine hydroxylase (TH) and DBH. The toxins were selective.

View Article and Find Full Text PDF

Despite numerous studies it remains controversial whether nitric oxide (NO·) synthesized by neuronal NOS (nNOS) plays an excitatory or inhibitory role in transmission of baroreflex signals in the nucleus tractus solitarii (NTS). In the current studies we sought to test the hypothesis that nNOS is involved in excitation of baroreflex pathways in NTS while excluding pharmacological interventions in assessing the influence of nNOS. We therefore developed, validated and utilized a short hairpin RNA (shRNA) to reduce expression of nNOS in the NTS of rats whose baroreflex activity was then studied.

View Article and Find Full Text PDF

Lesions that remove neurons expressing neurokinin-1 (NK1) receptors from the nucleus tractus solitarii (NTS) without removing catecholaminergic neurons lead to loss of baroreflexes, labile arterial pressure, myocardial lesions, and sudden death. Because destruction of NTS catecholaminergic neurons expressing tyrosine hydroxylase (TH) may also cause lability of arterial pressure and loss of baroreflexes, we sought to test the hypothesis that cardiac lesions associated with lability are not dependent on damage to neurons with NK1 receptors but would also occur when TH neurons in NTS are targeted. To rid the NTS of TH neurons we microinjected anti-dopamine β-hydroxylase conjugated to saporin (anti-DBH-SAP, 42 ng/200 nl) into the NTS.

View Article and Find Full Text PDF

Injection into the nucleus tractus solitarii (NTS) of toxins that target substance P (SP) receptors ablates neurons that express neurokinin-1 (NK1) receptors, attenuates baroreflexes, and results in increased lability of arterial pressure. We and others have shown that the toxin leads to loss of neurons containing SP receptors and loss of GABAergic neurons in the NTS; but given that neither type neuron is thought to be integral to baroreflex transmission in NTS, mechanisms responsible for the cardiovascular changes remained unclear. Because NK1 receptors colocalize with N-methyl-d-aspartate (NMDA) receptors and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in NTS and because glutamate transmission may be integral to baroreflex transmission in the NTS we hypothesized that the toxic lesions may interrupt mechanisms for glutamate transmission.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) has distinct advantages over other viral vectors in delivering genes of interest to the brain. AAV mainly transfects neurons, produces no toxicity or inflammatory responses, and yields long-term transgene expression. In this study, we first tested the hypothesis that AAV serotype 2 (AAV2) selectively transfects neurons but not glial cells in the nucleus tractus solitarii (NTS) by examining expression of the reporter gene, enhanced green fluorescent protein (eGFP), in the rat NTS after unilateral microinjection of AAV2eGFP into NTS.

View Article and Find Full Text PDF

A dense network of nerves containing neuronal nitric oxide synthase is present in cerebral vessels from experimental animals. The nerves may regulate cerebrovascular tone, protect the brain from stroke, and contribute to cluster headaches in humans; but studies in humans have shown only modest nitroxidergic innervation of cerebral vessels. We tested the hypothesis that nerve fibers containing neuronal nitric oxide synthase richly innervate human cerebral arteries.

View Article and Find Full Text PDF

Both glutamate and nitric oxide (NO) may play an important role in cardiovascular reflex and respiratory signal transmission in the nucleus tractus solitarii (NTS). Pharmacological and physiological data have shown that glutamate and NO may be linked in mediating cardiovascular regulation by the NTS. Through tract tracing, multiple-label immunofluorescent staining, confocal microscopic, and electronic microscopic methods, we and other investigators have provided anatomical evidence that supports a role for glutamate and NO as well as an interaction between glutamate and NO in cardiovascular regulation in the NTS.

View Article and Find Full Text PDF

Humans with central lesions that augment sympathetic nerve activity are predisposed to cardiac arrhythmias, myocardial lesions, and sudden death. Previously, we showed that selectively killing neurons with neurokinin-1 receptors in the nucleus tractus solitarii (NTS) of rats attenuated the baroreflex and, in some animals, led to sudden unexplained death within approximately 2 wk. Interruption of arterial baroreflexes is known to increase sympathetic activity.

View Article and Find Full Text PDF

We sought to test the hypothesis that cardiovascular responses to activation of ionotropic, but not metabotropic, glutamate receptors in the nucleus tractus solitarii (NTS) depend on soluble guanylate cyclase (sGC) and that inhibition of sGC would attenuate baroreflex responses to changes in arterial pressure. In adult male Sprague-Dawley rats anesthetized with chloralose, the ionotropic receptor agonists N-methyl-d-aspartate (NMDA) and dl-alpha-amino-3-hydroxy-5-methylisoxazole-propionic acid (AMPA) and the metabotropic receptor agonist trans-dl-amino-1,3-cyclopentane-dicarboxylic acid (ACPD) were microinjected into the NTS before and after microinjection of sGC inhibitors at the same site. Inhibition of sGC produced significant dose-dependent attenuation of cardiovascular responses to NMDA but did not alter responses produced by injection of AMPA or ACPD.

View Article and Find Full Text PDF

Parasympathetic preganglionic neurons of the superior salivatory nucleus (SSN), which projects to the pterygopalatine ganglion (PPG), modulate salivation, lacrimation, and cerebrovascular tone. Our previous studies suggest that excitatory projections from the nucleus tractus solitarii modulate cerebrovascular tone by actions on SSN neurons. In this study we sought to test the hypothesis that N-methyl-D-aspartate (NMDA) type glutamate receptors and vesicular glutamate transporters (VGLUT) are present in the SSN and that SSN neurons receive glutamatergic input.

View Article and Find Full Text PDF

The neuropeptide substance P (SP) is found in vagal afferent nerves within the nucleus tractus solitarii, where it is released on stimulation of arterial baroreflexes. The neurokinin-1 receptors at which SP may act have been identified in the nucleus tractus solitarii, but there remains uncertainty if the neurons at which SP acts are critical to baroreflex transmission. By using SP conjugated with the toxin saporin, which kills the neurons at which SP may act, we sought to test the hypothesis that neurons expressing the neurokinin-1 receptor are critical to baroreflex transmission in the nucleus tractus solitarii.

View Article and Find Full Text PDF

We previously showed that most neuronal nitric oxide synthase (nNOS)-containing neurons in the nucleus tractus solitarii (NTS) contain NMDAR1, the fundamental subunit for functional N-methyl-D-aspartate (NMDA) receptors. Likewise, we found that almost all nNOS-containing neurons in the NTS contain GluR1, the calcium permeable AMPA receptor subunit. These data suggest that AMPA and NMDA receptors may colocalize in NTS neurons that contain nNOS.

View Article and Find Full Text PDF