Publications by authors named "Li Hong-Yu"

Ischemic stroke is a prevalent clinical condition that poses a significant global challenge. Developing innovative strategies to address this issue is crucial. Annexin A1 (ANXA1), a key member of the annexin superfamily, performs various functions, such as inhibiting inflammatory factor release, promoting phagocytosis, and blocking leukocyte migration.

View Article and Find Full Text PDF

Background: A body of evidence has suggested bidirectional relationships among gallstone disease (GSD), non-alcoholic fatty liver disease (NAFLD), and kidney stone disease (KSD). However, the results are inconsistent, and studies on this topic in China are relatively few. Our goal is to explore the bidirectional associations among these three diseases through a multicenter study, systematic review, and meta-analysis.

View Article and Find Full Text PDF

Oxygen evolution reaction (OER) is an indispensable anode reaction for sustainable hydrogen production from water electrolysis, yet overreliance on metal-based catalysts featured with vibrant d-electrons. It still has notable gap between metal-free and metal-based electrocatalysts, due to lacking accurate and efficient p-band regulation methods on non-metal atoms. Herein, a molecular modularization strategy is proposed for fine-tuning the p-orbital states of series metal-free covalent organic frameworks (COFs) for realizing OER performance beyond benchmark precious metal catalysts.

View Article and Find Full Text PDF

Over the past decade, there has been extensive work in developing integrated silicon photonics (SiPh) gratings for the optical addressing of trapped ion qubits among the ion trap quantum computing community. However, when viewing beam profiles from gratings using infrared (IR) cameras, it is often difficult to determine the corresponding heights where the beam profiles are located. In this work, we developed transformer models to recognize the corresponding height categories of beam profiles in light from SiPh gratings.

View Article and Find Full Text PDF

Glucocorticoid-induced osteoporosis (GIOP) is the leading cause of iatrogenic osteoporosis due to the widespread clinical use of glucocorticoids (GC) as immunosuppressants. Previous research identified the proline-rich tyrosine kinase 2, Pyk2, as a critical mediator of GC-induced bone loss, and that blocking Pyk2 could protect the skeleton from adverse GC actions. However, systemic administration of current Pyk2 inhibitors causes harmful side effects, such as skin lesions.

View Article and Find Full Text PDF

Acquisition of prostate cancer stem cells (PCSCs) manifested during androgen ablation therapy (ABT) contributes to castration-resistant prostate cancer (CRPC). However, little is known about the specific metabolites critically orchestrating this process. Here, we show that IMPA1-derived inositol enriched in PCSCs is a key metabolite crucially maintaining PCSCs for CRPC progression and ABT resistance.

View Article and Find Full Text PDF

The fabrication of anti-reflection (AR) subwavelength structures (SWSs) of lithium niobate (LN) is a challenging but rewarding task in mid-infrared LN laser systems. However, there are still some issues with the high-quality processing and fabrication of bifacial AR SWSs. Herein, a novel, to the best of our knowledge, approach to the fabrication of SWSs was proposed, which includes femtosecond laser ablation followed by wet etching and thermal annealing.

View Article and Find Full Text PDF

Dysfunction of the ribosome manifests during cellular senescence and contributes to tissue aging, functional decline, and development of aging-related disorders in ways that have remained enigmatic. Here, we conducted a comprehensive CRISPR-based loss-of-function (LOF) screen of ribosome-associated genes (RAGs) in human mesenchymal progenitor cells (hMPCs). Through this approach, we identified ribosomal protein L22 (RPL22) as the foremost RAG whose deficiency mitigates the effects of cellular senescence.

View Article and Find Full Text PDF

The residues of organophosphorus pesticides (OPs) are increasing environmental pollution and public health concerns. Thus, the development of simple, convenient and sensitive method for detection of OPs is crucial. Herein, a multifunctional Fe-based MOF with fluorescence, catalytic and adsorption, is synthesized by a simple one-pot hydrothermal method.

View Article and Find Full Text PDF

Type II kinase inhibitors bind in the "DFG-out" kinase conformation and are generally considered to be more potent and selective than type I inhibitors, which target a DFG-in conformation. Nine type II inhibitors are currently clinically approved, with more undergoing clinical development. Resistance-conferring secondary mutations emerged with the first series of type II inhibitors, most commonly at residues within the kinase activation loop and at the "gatekeeper" position.

View Article and Find Full Text PDF

To determine the detection rate of chromosomal abnormalities and pregnancy outcomes in fetuses with intrauterine growth restriction. Study design A total of 151 fetal samples with intrauterine growth restriction were divided into the isolated fetal growth restriction (FGR) group, FGR group with structural malformation, and FGR group with non-structural malformation, according to ultrasound abnormalities. The enrolled patients were divided into an early onset FGR group (<32 weeks) and a late-onset FGR group (≥32 weeks).

View Article and Find Full Text PDF

has been historically employed as a conventional botanical insecticide and a plant of medicinal significance. A new dihydroagarofuran sesquiterpene () and a new acyclic compound (), along with seven known compounds (), have been isolated from the aerial parts of . The identification of the structures of novel compounds were accomplished through comprehensive spectroscopic analyses, encompassing HRESIMS, NMR, UV, IR, and a comparative analysis with spectroscopic data from compounds previously characterised.

View Article and Find Full Text PDF

Recent development of new immune checkpoint inhibitors has been particularly successfully in cancer treatment, but still the majority patients fail to benefit. Converting resistant tumors to immunotherapy sensitive will provide a significant improvement in patient outcome. Here we identify Mi-2β as a key melanoma-intrinsic effector regulating the adaptive anti-tumor immune response.

View Article and Find Full Text PDF

The animal species is one of the key factors affecting the quality of Bufonis Venenum. The quality of Bufonis Venenum derived from Bufo bufo gargarizans is significantly higher than that from B. melanostictus.

View Article and Find Full Text PDF

Lithium niobate (LN) crystal plays important roles in future integrated photonics, but it is still a great challenge to efficiently fabricate three-dimensional micro-/nanostructures on it. Here, a femtosecond laser direct writing-assisted liquid back-etching technology (FsLDW-LBE) is proposed to achieve the three-dimensional (3D) microfabrication of lithium niobate (LN) with high surface quality (Ra = 0.422 nm).

View Article and Find Full Text PDF
Article Synopsis
  • Rhenium sulfide (ReS) is a promising 2D material with excellent visible light absorption, making it suitable for optoelectronic applications, and this study focuses on enhancing its efficiency by creating a semiconductor heterostructure with ZnO on vacancy-containing ReS (V-ReS).
  • The study highlights how the intentionally designed electric field within this heterostructure reduces the recombination of charge carriers, leading to better charge separation and transfer due to a strong Zn-S bond formed at the interface.
  • Experimental techniques like femtosecond Z-scan and transient absorption measurements reveal that this Zn-S bond significantly improves the nonlinear optical properties and photoluminescence of the V-ReS@ZnO heter
View Article and Find Full Text PDF

Systematic interface and defect engineering strategies have been demonstrated to be an effective way to modulate the electron transfer and nonlinear absorption properties in semiconductor heterojunctions. However, the role played by defects and interfacial strain in electron transfer at the interface of the MoX (X = Se, S, Te)@ZnO heterojunction remains poorly understood. Herein, using the MoX@ZnO heterojunction, we reveal that vacancies play a critical role in the interfacial electron transfer of heterojunctions.

View Article and Find Full Text PDF

This study investigated the effect of Xiaoxuming Decoction(XXMD) on the activation of astrocytes after cerebral ischemia/reperfusion(I/R) injury. The model of cerebral IR injury was established using the middle cerebral artery occlusion method. Fluorocitrate(FC), an inhibitor of astrocyte activation, was applied to inhibit astrocyte activation.

View Article and Find Full Text PDF
Article Synopsis
  • About 30% of newly diagnosed acute myeloid leukemia (AML) cases have activating FLT3 mutations, particularly internal tandem duplications (ITDs), which can lead to poor treatment outcomes.
  • Three FLT3 inhibitors—midostaurin (first-generation), quizartinib, and gilteritinib (both second-generation)—are currently approved, with the latter two showing improved efficacy but facing resistance due to secondary mutations in the FLT3 gene.
  • A new compound, compound 24, was identified as an effective FLT3 inhibitor that works well against both the main FLT3-ITD and resistant mutations (D835Y and F691L), showing potential for better treatment options in AML
View Article and Find Full Text PDF

Organophosphorus pesticides (OPs) are of great concern due to its potential harms on human health and the environment. Herein, a budget-friendly, rapid and convenient colorimetric sensing platform is developed for detection of OPs in the environmental and food samples. The sensing element, PANI-MnO nanozyme with excellent oxidase mimetic activity is synthesized at room temperature, which is able to directly oxidize 3,3,5,5-tetramethylbenzidine (TMB) to generate blue colored oxidized TMB (OxTMB) within 2 min.

View Article and Find Full Text PDF

Activating mutations within FLT3 make up 30 % of all newly diagnosed acute myeloid leukemia (AML) cases, with the most common mutation being an internal tandem duplication (FLT3-ITD) in the juxtamembrane region (25 %). Currently, two generations of FLT3 kinase inhibitors have been developed, with three inhibitors clinically approved. However, treatment of FLT3-ITD mutated AML is limited due to the emergence of secondary clinical resistance, caused by multiple mechanism including on-target FLT3 secondary mutations - FLT3-ITD/D835Y and FLT3-ITD/F691L being the most common, as well as the off-target activation of alternative pathways including the BCR-ABL pathway.

View Article and Find Full Text PDF

Cancer continues to be a major health concern globally, although the advent of targeted therapy has revolutionized treatment options. Aurora Kinase B is a serine-threonine kinase that has been explored as an oncology therapeutic target for more than two decades. Aurora Kinase B inhibitors show promising biological results in in-vitro and in-vivo experiments.

View Article and Find Full Text PDF

MA (-methyladenosine) plays a significant role in regulating RNA processing, splicing, nucleation, translation, and stability. AlkB homologue 5 (ALKBH5) is an Fe(II)/2-oxoglutarate (2-OG)-dependent dioxygenase that demethylates mono- or dimethylated adenosines. ALKBH5 can be regarded as an oncogenic factor for various human cancers.

View Article and Find Full Text PDF

Background: Stem cell properties vary considerably based on the source and tissue site of mesenchymal stem cells (MSCs). The mandibular condyle is a unique kind of craniofacial bone with a special structure and a relatively high remodeling rate. MSCs here may also be unique to address specific physical needs.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to investigate how low oxygen levels affect the neural retina in retinal organoids made from human induced pluripotent stem cells (hiPSCs).
  • Researchers used a three-dimensional culture method to create embryoid bodies, observing them under both hypoxic (low oxygen) and normoxic (normal oxygen) conditions over several days.
  • Results indicated that while low oxygen levels increased the number of proliferating cells, it also changed the composition of specific cell types, enhancing stem cell characteristics in the neural retina.
View Article and Find Full Text PDF