Publications by authors named "Li Haiwang"

Hypothesis: Complex emulsions usually consist of aqueous phases, like oil-in-water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w), serving foundational roles in colloid science. Oil-in-oil-oil (o/o/o) emulsions offer new avenues for non-aqueous reagents but face challenges in balancing the forces between multiple organic phases.

Experiments: In this work, we generate o/o/o emulsions by integrating an AC electric field with a double cross-junction microchannel.

View Article and Find Full Text PDF
Article Synopsis
  • Emulsions are crucial in industries like pharmaceuticals, cosmetics, and food, with this study focusing specifically on oil-in-oil (o/o) emulsions and their unique behaviors under AC electric fields.
  • The research categorizes droplet behaviors into five types—“no effect”, “movement”, “deformation”, “interface rupture”, and “disorder”—and identifies a key dimensionless number to characterize these behaviors in specific emulsions.
  • Findings highlight how factors like droplet viscosity and electric field influence droplet dynamics, paving the way for potential applications in chemical synthesis and material science.
View Article and Find Full Text PDF

The impact of compound droplets on solid surfaces is a ubiquitous phenomenon that pervades both the natural and technological fields. A comprehensive understanding of the dynamics of the droplet impact on solid surfaces is therefore of paramount importance for a broad range of applications. In this study, we investigate the impact of a water-in-oil compound droplet on a thin hydrophobic cylindrical surface, with regard to the Weber number and cylinder dimensions.

View Article and Find Full Text PDF

Droplet coalescence with fast response, high controllability and monodispersity has been widely investigated in industrial production and bioengineering. Especially for droplets with multiple components, programmable manipulation of such droplets is crucial for practical applications. However, precise control of the dynamics can be challenging, owing to the complex boundaries and the interfacial and fluidic properties.

View Article and Find Full Text PDF

The development of radio-frequency integrated circuits (RF-IC) necessitates higher requirements for the size of microtransformers. This paper describes millimeter-scale 3D transformers in millimeter-scale, solenoidal, and toroidal transformers manufactured using Micro-electromechanical Systems (MEMS). Two through-silicon via (TSV) copper coils with a high aspect ratio are precisely interleaved on a reserved air core (magnet core cavity) with a vertical height of over 1 mm because of the thickness of the substrate, which increases the performance while reducing the footprint.

View Article and Find Full Text PDF

The conjugate heat transfer of a turbine blade is influenced by several factors. To analyze the influence of each factor, the published one-dimensional conjugate heat transfer model was improved through theoretical analysis in this study. An overall cooling effectiveness equation containing three dimensionless parameters (adiabatic film cooling effectiveness η, Biot number on the mainstream side Bi, and ratio between the heat transfer coefficients of the external and internal walls h/h) was obtained.

View Article and Find Full Text PDF

Recently, microfluidic techniques have been widely applied for biomaterial droplet manipulations due to their precision and efficiency. Many biosamples such as deoxyribonucleic acid and blood samples are non-Newtonian fluids with complex rheology, which brings challenges in control over them. The electric field is characterized by fast response and excellent adaptation to control microscale fluid flow.

View Article and Find Full Text PDF

Hypothesis: Multilayer capsules not only provide better protection for the core, but also enable multifunctionalities. However, their fabrication is challenging. Rapid encapsulation by the impact of the droplet is a simplified approach to form the compound droplet with a single shell layer.

View Article and Find Full Text PDF

Integrated 2D spiral inductors possess low inductance per unit area, which limits their application range. However, the state of investigation into the lumped-element parameter extraction method for integrated 3D in-chip multi-turn solenoid inductors, which possess higher inductance per unit area, is inadequate. This type of inductor can thus not be incorporated into fast computer-aided design (CAD)-assisted circuit design.

View Article and Find Full Text PDF

Due to the large surface-area-to-volume ratio, microchannel heat exchangers have a higher heat transfer rate compared with traditional scale heat exchangers. In this study, the optimum microchannel cavity with high heat transfer and low flow resistance is designed to further improve microchannel exchangers' thermal performance. A three-dimensional laminar flow model, consisting of Navier-Stokes equations and an energy conservation equation is solved and the conjugate heat transfer between the silicon basement and deionized water is taken into consideration.

View Article and Find Full Text PDF

This experiment measured the instantaneous temperature and velocity field synchronously in non-isothermal turbulent boundary layer in a rotating straight channel with a parallel-array hot-wire probe. The Reynolds number based on the bulk mean velocity (U) and hydraulic diameter (D) is 19000, and the rotation numbers are 0, 0.07, 0.

View Article and Find Full Text PDF

The application of microchannel heat exchangers is of great significance in industrial fields due to their advantages of miniaturized scale, large surface-area-to-volume ratio, and high heat transfer rate. In this study, microchannel heat exchangers with and without fan-shaped reentrant cavities were designed and manufactured, and experiments were conducted to investigate the flow and heat-transfer characteristics. The impact rising from the radius of reentrant cavities, as well as the Reynolds number on the heat transfer and the pressure drop, is also analyzed.

View Article and Find Full Text PDF

In this study, a 3D coil embedded in a silicon substrate including densely distributed through-silicon vias (TSVs) was fabricated via a rapid metal powder sintering process. The filling and sintering methods for microdevices were evaluated, and the effects of powder types were compared. The parameters influencing the properties and processing speed were analyzed.

View Article and Find Full Text PDF

We conducted systematic numerical investigations of the flow characteristics within the entrance region of rectangular microchannels. The effects of the geometrical aspect ratio and roughness on entrance lengths were analyzed. The incompressible laminar Navier-Stokes equations were solved using finite volume method (FVM).

View Article and Find Full Text PDF

High-precision, low-temperature-sensitive microelectromechanical system (MEMS) capacitive accelerometers are widely used in aerospace, automotive, and navigation systems. An analytical study of the temperature drift of bias (TDB) and temperature drift of scale factor (TDSF) for an asymmetric comb capacitive accelerometer is presented in this paper. A five-layer model is established for the equivalent expansion ratio in the TDB and TDSF formulas, and the results calculated by the weighted average of thickness and elasticity modulus method are closest to the results of the numerical simulation.

View Article and Find Full Text PDF

Flow characteristics within entrance regions in microchannels are important due to their effect on heat and mass transfer. However, relevant research is limited and some conclusions are controversial. In order to reveal flow characteristics within entrance regions and to provide empiric correlation estimating hydrodynamic entrance length, experimental and numerical investigations were conducted in microchannels with square cross-sections.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on optimizing the electroplating process for filling high aspect ratio through-silicon-vias (TSVs), utilizing pulsed power and varying additive concentrations.
  • Control variable experiments assessed multiple factors, including current density, additive concentration, and TSV shapes (circular, oval, and square), to find the best combination for speed and quality.
  • The optimized conditions resulted in fully filling 500-μm-deep TSVs and successfully electroplating the deepest (1000-μm) and smallest (100 μm diameter) TSVs for a three-dimensional inductor in a record time of 45 hours.
View Article and Find Full Text PDF
Article Synopsis
  • Black silicon has gained attention due to its low light absorption and is used in various fields, but traditional fabrication methods face challenges.
  • This study introduces a new hybrid fabrication method to create secondary nanostructured black silicon, achieving impressively low reflectance (0.5%) and high absorption efficiency (98%) with specific dimensions.
  • Results show that absorption efficiency varies with size, initially increasing before decreasing, and most nanostructures fall within the 10-40 nm diameter range.
View Article and Find Full Text PDF

The focus of this study is on the manufacturing of micro air bearings (MABs) using silica film assisted processing. Structure of the three-layer micro air bearing is described in detail and the salient process flow of etching and bonding is illustrated. The main manufacturing challenges and the methods adopted to overcome them are also presented.

View Article and Find Full Text PDF

Photosynthesis is the basis of plant growth and development, and is seriously affected by low phosphorus (P) stress. However, few studies have reported for the genetic foundation of photosynthetic response to low P stress in soybean. To address this issue, 219 soybean accessions were genotyped by 292,035 high-quality single nucleotide polymorphisms (SNPs) and phenotyped under normal and low P conditions in 2015 and 2016.

View Article and Find Full Text PDF

Black silicon fabrication and manipulation have been well reported by institutes around the world and are quite useful for solar absorption and photovoltaic conversion. In this study, silicon micro-nano hybrid structures were fabricated, and the morphologies of the hybrid structures were analyzed. This paper studied nanostructures formed on tips, pits and a flat surface using a dry etching method and a wet etching method.

View Article and Find Full Text PDF

This paper numerically and experimentally investigates and demonstrates the design of an optofluidic in-plane bi-concave lens to perform both light focusing and diverging using the combined effect of pressure driven flow and electro-osmosis. The concave lens is formed in a rectangular chamber with a liquid core-liquid cladding (L(2)) configuration. Under constant flow rates, the performance of the lens can be controlled by an external electric field.

View Article and Find Full Text PDF

A microfluidic dynamic fluorescence-activated interface control system was developed for lab-on-a-chip applications. The system consists of a straight rectangular microchannel, a fluorescence excitation source, a detection sensor, a signal conversion circuit, and a high-voltage feedback system. Aqueous NaCl as conducting fluid and aqueous glycerol as nonconducting fluid were introduced to flow side by side into the straight rectangular microchannel.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session24h9krkllab25d15lp9cso07n98o6ke5): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once