Publications by authors named "Li Guo Yang"

Lens tension is essential for accommodative vision but remains challenging to measure with precision. Here, we present an optical coherence elastography (OCE) technique that quantifies both the tension and elastic modulus of lens tissue and capsule. This method derives mechanical parameters from surface wave dispersion across a critical frequency range of 1-30 kHz.

View Article and Find Full Text PDF

In vivo mechanical characterization of skin finds broad applications in understanding skin aging, diagnosis of some skin diseases and assessing the effectiveness of diverse skin care strategies. Skin has a layered structure consisting of the epidermis, dermis and subcutaneous layers. Although much effort has been made towards mechanical characterization of skin, it remains a challenging issue to measure the mechanical properties of an individual layer in vivo.

View Article and Find Full Text PDF

Accurate measurement of gingiva's biomechanical properties in vivo has been an active field of research but remained an unmet challenge. Currently, there are no noninvasive tools that can accurately quantify tensile and shear moduli, which govern gingival health, with sufficiently high accuracy. This study presents the application of high-frequency optical coherence elastography (OCE) for characterizing gingival tissue in both porcine models and human subjects.

View Article and Find Full Text PDF

Doxorubicin has been used extensively as a potent anticancer agent, but its clinical use is limited by its cardiotoxicity. However, the underlying mechanisms remain to be fully elucidated. In this study, we tested whether NADPH oxidase 2 (Nox2) mediates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy, resulting in cardiac atrophy and dysfunction in doxorubicin-induced heart failure.

View Article and Find Full Text PDF

Doxorubicin is widely used for the treatment of human cancer, but its clinical use is limited by a cumulative dose-dependent cardiotoxicity. However, the mechanism of doxorubicin-induced cardiac atrophy and failure remains to be fully understood. In this study, we tested whether the specific NADPH oxidase 2 (Nox2) inhibitor GSK2795039 attenuates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy, leading to the amelioration of cardiac atrophy and dysfunction in chronic doxorubicin-induced cardiomyopathy.

View Article and Find Full Text PDF

Understanding corneal stiffness is valuable for improving refractive surgery, detecting corneal abnormalities, and assessing intraocular pressure. However, accurately measuring the elastic properties, specifically the tensile and shear moduli that govern mechanical deformation, has been challenging. To tackle this issue, we have developed guided-wave optical coherence elastography that can simultaneously excite and analyze symmetric (S0) and anti-symmetric (A0) elastic waves in the cornea at around 10 kHz frequencies, enabling us to extract tensile and shear properties from measured wave dispersion curves.

View Article and Find Full Text PDF

Objective: The mechanical properties of corneal tissues play a crucial role in determining corneal shape and have significant implications in vision care. This study aimed to address the challenge of obtaining accurate in vivo data for the human cornea.

Methods: We have developed a high-frequency optical coherence elastography (OCE) technique using shear-like antisymmetric (A0)-mode Lamb waves at frequencies above 10 kHz.

View Article and Find Full Text PDF

Shear wave elastography (SWE) enables the measurement of elastic properties of soft materials in a non-invasive manner and finds broad applications in various disciplines. The state-of-the-art SWE methods rely on the measurement of local shear wave speeds to infer material parameters and suffer from wave diffraction when applied to soft materials with strong heterogeneity. In the present study, we overcome this challenge by proposing a physics-informed neural network (PINN)-based SWE (SWENet) method.

View Article and Find Full Text PDF

Surface waves play important roles in many fundamental and applied areas from seismic detection to material characterizations. Supershear surface waves with propagation speeds greater than bulk shear waves have recently been reported, but their properties are not well understood. Here we describe theoretical and experimental results on supershear surface waves in rubbery materials.

View Article and Find Full Text PDF

Understanding corneal stiffness is valuable for improving refractive surgery, detecting corneal abnormalities, and assessing intraocular pressure. However, accurately measuring the elastic properties, particularly the tensile and shear moduli that govern mechanical deformation, has been challenging. To tackle this issue, we have developed guided-wave optical coherence elastography that can simultaneously excite and analyze symmetric (S0) and anti-symmetric (A0) elastic waves in the cornea at frequencies around 10 kHz and allows us to extract tensile and shear properties from measured wave dispersion curves.

View Article and Find Full Text PDF

Visualizing viscoelastic waves in materials and tissues through noninvasive imaging is valuable for analyzing their mechanical properties and detecting internal anomalies. However, traditional elastography techniques have been limited by a maximum wave frequency below 1-10 kHz, which hampers temporal and spatial resolution. Here, we introduce an optical coherence elastography technique that overcomes the limitation by extending the frequency range to MHz.

View Article and Find Full Text PDF

Mechanical stresses across different length scales play a fundamental role in understanding biological systems' functions and engineering soft machines and devices. However, it is challenging to noninvasively probe local mechanical stresses in situ, particularly when the mechanical properties are unknown. We propose an acoustoelastic imaging-based method to infer the local stresses in soft materials by measuring the speeds of shear waves induced by custom-programmed acoustic radiation force.

View Article and Find Full Text PDF

Doxorubicin (DOX), which is widely used for the treatment of cancer, induces cardiomyopathy associated with NADPH oxidase-derived reactive oxygen species. GSK2795039 is a novel small molecular NADPH oxidase 2 (Nox2) inhibitor. In this study, we investigated whether GSK2795039 prevents receptor-interacting protein kinase 1 (RIP1)-RIP3-mixed lineage kinase domain-like protein (MLKL)-mediated cardiomyocyte necroptosis in DOX-induced heart failure through NADPH oxidase inhibition.

View Article and Find Full Text PDF

Toll and Toll-like receptors (TLRs) play essential roles in the innate immunity of and mammals. Recent studies have revealed the presence of Toll-mediated immune signaling pathways in shrimp. However, the recognition and activation mechanism of Toll signaling pathways in crustaceans remain poorly understood due to the absence of key recognition molecules, such as peptidoglycan recognition proteins.

View Article and Find Full Text PDF

Scleral crosslinking may provide a way to prevent or treat myopia by stiffening scleral tissues. The ability to measure the stiffness of scleral tissues pre and post scleral crosslinking would be useful but has not been established. Here, we tested the feasibility of optical coherence elastography (OCE) to measure shear modulus of scleral tissues and evaluate the impact of crosslinking on different posterior scleral regions using porcine eyes as a model.

View Article and Find Full Text PDF

Type traits (TTs) can contribute to breeding animals with good economic traits such as production, longevity, fertility, and profitability. Dairy buffaloes are the second largest source of milk supply in the world, and their TTs should be taken into consideration in future dairy buffalo breeding programmes. However, the relationship between TTs and milk production traits in buffalo remains largely unknown.

View Article and Find Full Text PDF

Introduction: Clinical mastitis (CM) is one of the most common diseases of dairy cows globally, has a complex aetiology and recurs easily. is a frequently isolated pathogen responsible for bovine mastitis and remains difficult to eradicate.

Material And Methods: To characterise the transcriptional profiles of dairy cows infected by , we performed an RNA-seq analysis of peripheral blood leukocytes in lactating Chinese Holstein dairy cows with CM and did the same with healthy cows' samples as controls.

View Article and Find Full Text PDF

Titanium oxo clusters (TOCs) with accurate molecular structures have potential applications in photocatalysis, such as photocatalytic degradation, hydrogen production, and water oxidation. The hydrolytic stability and light absorption ability of TOCs have important impacts on photocatalysis, where the selection of peripheral organic ligands plays a significant role. In this regard, salicylhydroxamic acid (abbreviated as HL) attracts our attention, acting as a ligand for its multidentate and dye-functional features, which can increase the hydrolytic stability and broaden light absorption for TOCs.

View Article and Find Full Text PDF

Traveling-wave optical coherence elastography (OCE) is a promising technique to measure the stiffness of biological tissues. While OCE has been applied to relatively homogeneous samples, tissues with significantly varying elasticity through depth pose a challenge, requiring depth-resolved measurement with sufficient resolution and accuracy. Here, we develop a broadband Rayleigh-wave OCE technique capable of measuring the elastic moduli of the 3 major skin layers (epidermis, dermis, and hypodermis) reliably by analyzing the dispersion of leaky Rayleigh surface waves over a wide frequency range of 0.

View Article and Find Full Text PDF

Aging and cardiovascular diseases (CVDs) may alter the microstructures of arteries and hence their mechanical properties. Therefore, the measurement of intrinsic artery mechanical properties in vivo can provide valuable information in understanding aging and CVDs and is of clinical significance. The accuracy of advanced ultrasound imaging techniques in measuring the deformation of large arteries under blood pressure is good.

View Article and Find Full Text PDF

Testis is the primary organ of the male reproductive tract in mammals that plays a substantial role in spermatogenesis. Improvement of our knowledge regarding the molecular mechanisms in testicular development and spermatogenesis will be reflected in producing spermatozoa of superior fertility. Evidence showed that N6-Methyladenosine (m6A) plays a dynamic role in post-transcription gene expression regulation and is strongly associated with production traits.

View Article and Find Full Text PDF

The clinical and economic burdens of cardiovascular diseases pose a global challenge. Growing evidence suggests an early assessment of arterial stiffness can provide insights into the pathogenesis of cardiovascular diseases. However, it remains difficult to quantitatively characterize local arterial stiffness in vivo.

View Article and Find Full Text PDF

Measuring the in-plane mechanical stress in a taut membrane is challenging, especially if its material parameters are unknown or altered by the stress. Yet being able to measure the stress is of fundamental interest to basic research and practical applications that use soft membranes, from engineering to tissues. Here we present a robust non-destructive technique to measure directly in-situ stress and strain in soft thin films without the need to calibrate material parameters.

View Article and Find Full Text PDF

Mongolians have a long history of using prescriptions, which can be classified into four stages as follows: the germination and experience accumulation stage before the 13 th century, the theoretical formation stage from the 13 th to 16 th century, the rapid development stage from the 17 th to 20 th century, and the leaping development stage from the mid-20 th century to the present. The prescriptions from the ancient classical or representative medical books have always been used by Mongolian physicians for generations, and they are still in use due to the definite curative effects. In 2008, the Notice on Issuing the Supplementary Provisions to the Registration and Management of Traditional Chinese Medicine(TCM) described that China has attached more importance to the excavation and development of classical prescriptions.

View Article and Find Full Text PDF

Penaeus vannamei is the most economically important species of shrimp cultured worldwide. Enterocytozoon hepatopenaei (EHP) is an emerging pathogen that severely affects the growth and development of shrimps. In this study, the transcriptome differences between EHP-infected and uninfected shrimp were investigated through next-generation sequencing.

View Article and Find Full Text PDF