Publications by authors named "Li En-Min"

Background: Lysyl oxidase-like 2 (LOXL2) is a metalloenzyme that catalyzes oxidative deamination ε-amino group of lysine. It has been found that LOXL2 is a promotor for the metastasis and invasion in kinds of tumors. Previous studies show that disulfide bonds are important components in LOXL2, and their bioactivity can be regulated by those bonds.

View Article and Find Full Text PDF

Effectively interfering with endoplasmic reticulum (ER) function in tumor cells and simultaneously activating an anti-tumor immune microenvironment to attack the tumor cells are promising strategies for cancer treatment. However, precise ER-stress induction is still a huge challenge. In this study, we synthesized a near-infrared (NIR) probe, NIR-715, which induces tumor cell death and inhibits tumor growth without causing apparent side effects.

View Article and Find Full Text PDF

P21-activated kinases (PAKs) are crucial regulators within cellular signaling pathways and have been implicated in a range of human diseases, including cancer. Among the PAK family, PAK2 is widely expressed across various tissues and has emerged as a significant driver of cancer progression. However, systematic studies on PAK2 remain limited.

View Article and Find Full Text PDF

Fascin is a major actin-binding protein (ABP) for stabilizing filopodia to support efficient adhesion and migration of cancer cells. Fascin is also highly expressed in metastatic tumors. Disrupting the actin-binding site (ABS) on fascin constitutes a critical approach to hindering tumor metastasis.

View Article and Find Full Text PDF

According to morphological features, tumor-infiltrating B cells (TIL-Bs) can be classified as lympho-myeloid aggregates (LMAs) and tertiary lymphoid structures (TLSs). As a disease with high incidence and mortality, research on esophageal squamous cell carcinoma (ESCC) TIL-Bs is still unclear. Thus, we aimed to investigate the prognostic value and functional involvement of TIL-Bs in ESCC.

View Article and Find Full Text PDF

Early diagnosis and intervention of esophageal squamous cell carcinoma (ESCC) can improve the prognosis. The purpose of this study was to identify biomarkers for ESCC and esophageal precancerous lesions (intraepithelial neoplasia, IEN). Based on the proteomic and genomic data of esophageal tissue including previously reported data, up-regulated proteins with copy number amplification in esophageal cancer were screened as candidate biomarkers.

View Article and Find Full Text PDF
Article Synopsis
  • UASCC is a highly aggressive cancer characterized by elevated methionine levels, driven by the LAT1 transporter, which is uniquely activated in this type of cancer.
  • Research identifies EZH2 as a critical target downstream of the LAT1-methionine pathway, linking methionine metabolism to epigenomic changes essential for tumor growth.
  • Targeting this LAT1-methionine-EZH2 cascade through drugs or dietary changes presents a promising therapeutic strategy for UASCC.
View Article and Find Full Text PDF

Background: Concurrent chemo-radiotherapy (CCRT) is the preferred non-surgical treatment for patients with locally advanced esophageal squamous cell carcinoma (ESCC). Unfortunately, some patients respond poorly, which leads to inappropriate or excessive treatment and affects patient survival. To accurately predict the response of ESCC patients to CCRT, we developed classification models based on the clinical, serum proteomic and radiomic data.

View Article and Find Full Text PDF

Desmoglein-2 (DSG2) is a transmembrane glycoprotein belonging to the desmosomal cadherin family, which mediates cell-cell junctions; regulates cell proliferation, migration, and invasion; and promotes tumor development and metastasis. We previously showed serum DSG2 to be a potential biomarker for the diagnosis of esophageal squamous cell carcinoma (ESCC), although the significance and underlying molecular mechanisms were not identified. Here, we found that DSG2 was increased in ESCC tissues compared with adjacent tissues.

View Article and Find Full Text PDF

Fascin actin-bundling protein 1 (Fascin) is highly expressed in a variety of cancers, including esophageal squamous cell carcinoma (ESCC), working as an important oncogenic protein and promoting the migration and invasion of cancer cells by bundling F-actin to facilitate the formation of filopodia and invadopodia. However, it is not clear how exactly the function of Fascin is regulated by acetylation in cancer cells. Here, in ESCC cells, the histone acetyltransferase KAT8 catalyzed Fascin lysine 41 (K41) acetylation, to inhibit Fascin-mediated F-actin bundling and the formation of filopodia and invadopodia.

View Article and Find Full Text PDF
Article Synopsis
  • Vesicle trafficking is a complex process essential for transporting materials and delivering information within cells, with RAB11A identified as a crucial regulator in this system.
  • RAB11A's abnormal expression has been linked to various cancers, indicating its potential role in cancer development and suggesting that targeting RAB11A could improve treatment strategies.
  • The review discusses RAB11A's involvement in key biological processes and highlights its dual role in cancer, where it can act either as an oncogene or a tumor suppressor, emphasizing the need for further research into its mechanisms and implications in cancer therapy.
View Article and Find Full Text PDF

Background: As one of the most common malignancies, esophageal cancer has two subtypes, squamous cell carcinoma and adenocarcinoma, arising from distinct cells-of-origin. Distinguishing cell-type-specific molecular features from cancer-specific characteristics is challenging.

Results: We analyze whole-genome bisulfite sequencing data on 45 esophageal tumor and nonmalignant samples from both subtypes.

View Article and Find Full Text PDF

Proteins containing a CAAX motif at the C-terminus undergo prenylation for localization and activity and include a series of key regulatory proteins, such as RAS superfamily members, heterotrimeric G proteins, nuclear lamina protein, and several protein kinases and phosphatases. However, studies of prenylated proteins in esophageal cancer are limited. Here, through research on large-scale proteomic data of esophageal cancer in our laboratory, we found that paralemmin-2 (PALM2), a potential prenylated protein, was upregulated and associated with poor prognosis in patients.

View Article and Find Full Text PDF

Background: Increasing evidence indicates that the tumor microenvironment (TME) is a crucial determinant of cancer progression. However, the clinical and pathobiological significance of stromal signatures in the TME, as a complex dynamic entity, is still unclear in esophageal squamous cell carcinoma (ESCC).

Methods: Herein, we used single-cell transcriptome sequencing data, imaging mass cytometry (IMC) and multiplex immunofluorescence staining to characterize the stromal signatures in ESCC and evaluate their prognostic values in this aggressive disease.

View Article and Find Full Text PDF

(1) Background: Esophageal cancer (EC) is an important global health challenge. Due to the lack of necessary biomarkers and therapeutic targets, the survival of EC patients is poor. The EC proteomic data of 124 patients recently published by our group provides a database for research in this field.

View Article and Find Full Text PDF

Esophageal cancer is the seventh most common cancer in the world. Although traditional treatment methods such as radiotherapy and chemotherapy have good effects, their side effects and drug resistance remain problematic. The repositioning of drug function provides new ideas for the research and development of anticancer drugs.

View Article and Find Full Text PDF

Actin bundles are an important component of cellular cytoskeleton and participate in the movement of cells. The formation of actin bundles requires the participation of many actin binding proteins (ABPs). Fascin is a member of ABPs, which plays a key role in bundling filamentous actin (F-actin) to bundles.

View Article and Find Full Text PDF

Posttranslational modifications expand the functions of immune-related proteins, especially during infections. The respiratory glycoprotein, hemocyanin, has been implicated in many other functions, but the role of phosphorylation modification in its functional diversity is not fully understood. In this study, we show that Penaeus vannamei hemocyanin (PvHMC) undergoes phosphorylation modification during bacterial infection.

View Article and Find Full Text PDF

Objective: This study aimed to construct a new staging system for patients with esophageal squamous cell carcinoma (ESCC) based on combined pathological TNM (pTNM) stage, radiomics, and proteomics.

Methods: This study collected patients with radiomics and pTNM stage (Cohort 1, n = 786), among whom 103 patients also had proteomic data (Cohort 2, n = 103). The Cox regression model with the least absolute shrinkage and selection operator, and the Cox proportional hazards model were used to construct a nomogram and predictive models.

View Article and Find Full Text PDF

The past eighth edition of the American Joint Committee on Cancer (AJCC)/International Union against Cancer (UICC) pathologic tumor-node-metastasis (pTNM) staging system for esophageal squamous cell carcinoma (ESCC) patients, which also is the gold standard of postoperative treatment decision-making, needs to be continuously improved. To improve the efficiency of the staging system, the proteomic data from Chinese ESCC patients was combined with preoperative radiomic data and pTNM data to establish the multiomic RadpTNM and ProtRadpTNM models and compare them with the traditional pTNM staging system. The results suggest that both the RadpTNM and ProtRadpTNM models are significantly better than the traditional pTNM staging system.

View Article and Find Full Text PDF

Anillin (ANLN) is a mitosis-related protein that promotes contractile ring formation and cytokinesis, but its cell cycle-dependent degradation mechanisms in cancer cells remain unclear. Here, we show that high expression of ANLN promotes cytokinesis and proliferation in esophageal squamous cell carcinoma (ESCC) cells and is associated with poor prognosis in ESCC patients. Furthermore, the findings of the study showed that the deubiquitinating enzyme USP10 interacts with ANLN and positively regulates ANLN protein levels.

View Article and Find Full Text PDF

Although the aberrant activity of fibroblast growth factor receptor 3 (FGFR3) is implicated in various cancers, the reported kinase inhibitors of FGFR3 tend to cause side effects resulting from the inhibitory activity on vascular endothelial growth factor receptor 2 (VEGFR2). Therefore, it is necessary to find a novel high-selective inhibitor of FGFR3 over VEGFR2 from the small-molecule compound database. In this study, integrated virtual screening protocols were established to screen for selective inhibitors of FGFR3 over VEGFR2 in Drugbank and Asinex databases by combining three-dimensional pharmacophore model, molecular docking, molecular dynamics (MD) simulation, and molecular mechanics Poisson-Boltzmann surface area (MMPBSA) calculations.

View Article and Find Full Text PDF

Cell-cell junctions comprise various structures, including adherens junctions, tight junctions, desmosomes, and gap junctions. They link cells to each other in tissues and regulate tissue homeostasis in critical cellular processes. Recent advances in cell-cell junction research have led to critical discoveries.

View Article and Find Full Text PDF

Fascin is a filamentous actin (F-actin) bundling protein, which cross-links F-actin into bundles and becomes an important component of filopodia on the cell surface. Fascin is overexpressed in many types of cancers. The mutation of fascin affects its ability to bind to F-actin and the progress of cancer.

View Article and Find Full Text PDF

Lysyl-oxidase like-2 (LOXL2) regulates extracellular matrix remodeling and promotes tumor invasion and metastasis. Altered metabolism is a core hallmark of cancer, however, it remains unclear whether and how LOXL2 contributes to tumor metabolism. Here, we found that LOXL2 and its catalytically inactive L2Δ13 splice variant boost glucose metabolism of esophageal tumor cells, facilitate tumor cell proliferation and promote tumor development in vivo.

View Article and Find Full Text PDF