The antiferromagnetic structure of Yb_{3}Ga_{5}O_{12} is identified by neutron diffraction experiments below the previously known transition at T_{λ}=54 mK. The magnetic propagation vector is found to be k=(1/2,1/2,0), an unusual wave vector in the garnet structure. The associated complex magnetic structure highlights the role of exchange interactions in a nearly isotropic system dominated by dipolar interactions and finds echoes with exotic structures theoretically proposed.
View Article and Find Full Text PDFIn the dense metal-organic framework Na[Mn(HCOO)_{3}], Mn^{2+} ions (S=5/2) occupy the nodes of a "trillium" net. We show that the system is strongly magnetically frustrated: the Néel transition is suppressed well below the characteristic magnetic interaction strength; short-range magnetic order persists far above the Néel temperature; and the magnetic susceptibility exhibits a pseudo-plateau at 1/3-saturation magnetization. A simple model of nearest-neighbor Heisenberg antiferromagnetic and dipolar interactions accounts quantitatively for all observations, including an unusual 2-k magnetic ground state.
View Article and Find Full Text PDFWe investigate the temperature dependence of the spin dynamics in the pyrochlore magnet Nd_{2}Zr_{2}O_{7} by neutron scattering experiments. At low temperature, this material undergoes a transition towards an "all-in-all-out" antiferromagnetic phase and the spin dynamics encompass a dispersionless mode, characterized by a dynamical spin ice structure factor. Unexpectedly, this mode is found to survive above T_{N}≈300 mK.
View Article and Find Full Text PDFSpin liquids are highly correlated yet disordered states formed by the entanglement of magnetic dipoles. Theories define such states using gauge fields and deconfined quasiparticle excitations that emerge from a local constraint governing the ground state of a frustrated magnet. For example, the '2-in-2-out' ice rule for dipole moments on a tetrahedron can lead to a quantum spin ice in rare-earth pyrochlores.
View Article and Find Full Text PDFExtensive work on single molecule magnets has identified a fundamental mode of relaxation arising from the nuclear-spin assisted quantum tunnelling of nearly independent and quasi-classical magnetic dipoles. Here we show that nuclear-spin assisted quantum tunnelling can also control the dynamics of purely emergent excitations: magnetic monopoles in spin ice. Our low temperature experiments were conducted on canonical spin ice materials with a broad range of nuclear spin values.
View Article and Find Full Text PDFJ Synchrotron Radiat
November 2018
A new ultralow-temperature setup dedicated to soft X-ray absorption spectroscopy and X-ray magnetic circular dichroism (XMCD) experiments is described. Two experiments, performed on the DEIMOS beamline (SOLEIL synchrotron), demonstrate the outstanding performance of this new platform in terms of the lowest achievable temperature under X-ray irradiation (T = 220 mK), the precision in controlling the temperature during measurements as well as the speed of the cooling-down and warming-up procedures. Moreover, owing to the new design of the setup, the eddy-current power is strongly reduced, allowing fast scanning of the magnetic field in XMCD experiments; these performances lead to a powerful device for X-ray spectroscopies on synchrotron-radiation beamlines facilities.
View Article and Find Full Text PDFThe search for two-dimensional quantum spin liquids, exotic magnetic states remaining disordered down to zero temperature, has been a great challenge in frustrated magnetism over the last few decades. Recently, evidence for fractionalized excitations, called spinons, emerging from these states has been observed in kagome and triangular antiferromagnets. In contrast, quantum ferromagnetic spin liquids in two dimensions, namely quantum kagome ices, have been less investigated, yet their classical counterparts exhibit amazing properties, magnetic monopole crystals as well as magnetic fragmentation.
View Article and Find Full Text PDFDetermining the fate of the Pauling entropy in the classical spin ice material Dy_{2}Ti_{2}O_{7} with respect to the third law of thermodynamics has become an important test case for understanding the existence and stability of ice-rule states in general. The standard model of spin ice-the dipolar spin ice model-predicts an ordering transition at T≈0.15 K, but recent experiments by Pomaranski et al.
View Article and Find Full Text PDFEr_{2}Sn_{2}O_{7} remains a puzzling case among the extensively studied frustrated compounds of the rare-earth pyrochlore family. Indeed, while a first-order transition towards a long-range antiferromagnetic state with the so-called Palmer-Chalker structure is theoretically predicted, it has not yet been observed, leaving the issue as to whether it is a spin-liquid candidate open. We report on neutron scattering and magnetization measurements which evidence a second-order transition towards this Palmer-Chalker ordered state around 108 mK.
View Article and Find Full Text PDFThe complexity embedded in condensed matter fertilizes the discovery of new states of matter, enriched by ingredients like frustration. Illustrating examples in magnetic systems are Kitaev spin liquids, skyrmions phases, or spin ices. These unconventional ground states support exotic excitations, for example the magnetic charges in spin ices, also called monopoles.
View Article and Find Full Text PDFPhys Rev Lett
November 2015
By means of neutron scattering and magnetization measurements down to 90 mK, we determine the magnetic ground state of the spin-ice candidate Nd(2)Zr(2)O(7). We show that, despite ferromagnetic interactions, Nd(2)Zr(2)O(7) undergoes a transition around 285 mK towards an all-in-all-out antiferromagnetic state, with a strongly reduced ordered magnetic moment. We establish the (H,T) phase diagram in the three directions of the applied field and reveal a metamagnetic transition around 0.
View Article and Find Full Text PDFWe report the low-temperature magnetic properties of Ce2Sn2O7, a rare-earth pyrochlore. Our susceptibility and magnetization measurements show that due to the thermal isolation of a Kramers doublet ground state, Ce2Sn2O7 has Ising-like magnetic moments of ∼1.18 μ_{B}.
View Article and Find Full Text PDFThe magnetic behavior of polycrystalline samples of Er(2)Ir(2)O(7) and Tb(2)Ir(2)O(7) pyrochlores is studied by magnetization measurements and neutron diffraction. Both compounds undergo a magnetic transition at 140 and 130 K, respectively, associated with an ordering of the Ir sublattice, signaled by thermomagnetic hysteresis. In Tb(2)Ir(2)O(7), we show that the Ir molecular field leads the Tb magnetic moments to order below 40 K in the all-in-all-out magnetic arrangement.
View Article and Find Full Text PDFA new highly anisotropic coordination heterobimetallic polymer [Mn(III)(Schiff-base)]3[Re(IV)(CN)7] was synthesized and characterized structurally and magnetically. The single crystal X-ray analysis has revealed that this is the first framework among the complexes composed of homoleptic cyanometallate and Mn(III) complex of the tetradentate Schiff base ligand. A formation of 3D assembly is possible due to both the pentagonal bipyrimidal geometry of the cyanometallate unit and suitable size of constituents: [Re(CN)7](3-) and [Mn(III)(acacen)](+), where acacen = N,N'-ethylenebis(acetylacetoneiminato).
View Article and Find Full Text PDFThe rhenium(IV) complex (NBu4)2[ReBr4(ox)] (1) (ox = oxalate and NBu4(+) = tetra-n-butylammonium cation) has been prepared and its crystal structure determined by X-ray diffraction. The structure is made up of discrete [ReBr4(ox)](2-) anions and bulky NBu4(+) cations. Each [ReBr4(ox)](2-) anion is surrounded by six NBu4(+) cations, which preclude any significant intermolecular contact between the anionic entities, the shortest rhenium···rhenium distance being 9.
View Article and Find Full Text PDFWe present a model which accounts for the high-field magnetization at very low temperature in the frustrated pyrochlore compound Er2Ti2O7. In Er2Ti2O7, the Er(3+) ion has a planar crystal field anisotropy and the material undergoes a transition to antiferromagnetism at TN = 1.2 K.
View Article and Find Full Text PDFWe report magnetization and neutron scattering measurements down to 60 mK on a new family of Fe based kagome antiferromagnets, in which a strong local spin anisotropy combined with a low exchange path network connectivity lead to domain walls intersecting the kagome planes through strings of free spins. These produce unfamiliar slow spin dynamics in the ordered phase, evolving from exchange-released spin flips towards a cooperative behavior on decreasing the temperature, probably due to the onset of long-range dipolar interaction. A domain structure of independent magnetic grains is obtained that could be generic to other frustrated magnets.
View Article and Find Full Text PDFA new series of neutral oxamato-bridged M(II)Cu(II) chiral chains of general formula [MCuL(x)(S)(m)(H(2)O)(n)]·aS·bH(2)O [L(1)=(M)-1,1'-binaphthalene-2,2'-bis(oxamate) with M=Mn (1a) and Co (1b); L(2)=(P)-1,1'-binaphthalene-2,2'-bis(oxamate) with M=Mn (2a) and Co (2b)] and the analogous racemic chains of formula [MCuL(3)(S)(m)(H(2)O)(n)]·aS·bH(2)O [L(3)=1,1'-binaphthalene-2,2'-bis(oxamate) with M=Mn (3a) and Co (3b)] have been prepared by reaction of the corresponding dianionic oxamatocopper(II) complex [Cu(L(x))](2-) with Mn(2+) or Co(2+) cations in either dimethylformamide (DMF) or dimethyl sulfoxide (DMSO). Solid circular dichroism (CD) spectra of the bimetallic chain compounds were recorded to establish their chiral and enantiomeric nature. They exhibit maximum positive and negative Cotton effects, each pair of enantiomeric chains being non-superimposable mirror images.
View Article and Find Full Text PDFWe present current noise measurements in a long diffusive superconductor-normal-metal-superconductor junction in the low voltage regime, in which transport can be partially described in terms of coherent multiple Andreev reflections. We show that, when decreasing voltage, the current noise exhibits a strong divergence together with a broad peak. We ascribe this peak to the mixing between the ac-Josephson current and the noise of the junction itself.
View Article and Find Full Text PDFField-induced magnetic order has been investigated in detail in the interacting spin 3/2 dimer system Cs3Cr2Br9. Elastic and inelastic neutron scattering measurements were performed up to H=6 T, well above the critical field H(c1) approximately 1.5 T.
View Article and Find Full Text PDFThe discovery of superconductivity at high pressure (albeit over a restricted range) in the ferromagnetic material UGe2 raised the possibility that bulk superconductivity might be found in other ferromagnets. The exact symmetry of the paired state and the dominant mechanism responsible for the pairing, however, remain unidentified. Meanwhile, the conjecture that superconductivity could occur more generally in ferromagnets has been fuelled by the recent observation of a low-temperature transition that suggests an onset of superconductivity in high-quality crystals of the itinerant-ferromagnet ZrZn2 (ref.
View Article and Find Full Text PDF