Many oil and gas developments will soon be decommissioned and, knowledge on the accumulation of mercury (Hg), throughout offshore infrastructure is limited. Any release of Hg could have a detrimental impact on marine ecosystems. To bridge this knowledge gap, a fractionation approach was taken on steel samples exposed to Hg and HS, separating Hg compounds removed from the surface into polar, non-polar and insoluble fractions.
View Article and Find Full Text PDFArsenic-containing hydrocarbons (AsHC), a subclass of arsenolipids (AsL), have been proven to exert neuro- and cytotoxic effects in in-vitro and in-vivo studies and were shown to pass through biological barriers like the blood-brain barrier. However, there has been no connection as to the environmental relevance of these findings, meaning there is no study based on samples from free living animals that are exposed to these compounds. Here, we report the identification of two AsHC as well as 3 arsenosugar phospholipids (AsPL) in the brains of a pod of stranded long-finned pilot whales (Globicephala melas) as well as the absence of arsenobetaine (AsB) which is often found to be a dominant As species in fish.
View Article and Find Full Text PDFThe rate of decommissioning of global oil and gas production facilities will accelerate over coming decades, as mature developments reach the end of use, and consumers transition towards renewable energy. Decommissioning strategies should include thorough environmental risk assessments which consider contaminants which are known to be present in oil and gas systems. Mercury (Hg) is a global pollutant that occurs naturally in oil and gas reservoirs.
View Article and Find Full Text PDFNanoscale secondary ion mass spectrometry (NanoSIMS) is a dynamic SIMS technique, which offers high spatial resolution allowing the mapping of chemical elements at the nanometer scale combined with high sensitivity. However, SIMS for mercury analysis is a challenging issue due to the low secondary ion yield and has never been done on NanoSIMS. The introduction of an rf plasma oxygen primary ion source on NanoSIMS enabled higher lateral resolution and higher sensitivity for electropositive elements such as most metals.
View Article and Find Full Text PDFObjective: We address two questions relevant to infants' exposure to potentially toxic arsenolipids, namely, are the arsenolipids naturally present in fish transported intact to a mother's milk, and what is the efficiency of this transport.
Methods: We investigated the transport of arsenolipids and other arsenic species present in fish to mother's milk by analyzing the milk of a single nursing mother at 15 sampling times over a 3-day period after she had consumed a meal of salmon. Total arsenic values were obtained by elemental mass spectrometry, and arsenic species were measured by HPLC coupled to both elemental and molecular mass spectrometry.