Publications by authors named "Lezhneva L"

The control of messenger RNA (mRNA) translation has been increasingly recognized as a key regulatory step for gene control, but clear examples in eukaryotes are still scarce. Nucleo-cytoplasmic male sterilities (CMS) represent ideal genetic models to dissect genetic interactions between the mitochondria and the nucleus in plants. This trait is determined by specific mitochondrial genes and is associated with a pollen sterility phenotype that can be suppressed by nuclear genes known as restorer-of-fertility ().

View Article and Find Full Text PDF

Photosystem II (PSII) is a supramolecular complex containing over 30 protein subunits and a large set of cofactors, including various pigments and quinones as well as Mn, Ca, Cl, and Fe ions. Eukaryotic PSII complexes contain many subunits not found in their bacterial counterparts, including the proteins PsbP (PSII), PsbQ, PsbS, and PsbW, as well as the highly homologous, low-molecular-mass subunits PsbTn1 and PsbTn2 whose function is currently unknown. To determine the function of PsbTn1 and PsbTn2, we generated single and double and knockout mutants in Arabidopsis ().

View Article and Find Full Text PDF

Wood formation in higher plants is a complex and costly developmental process regulated by a complex network of transcription factors, short peptide signals and hormones. Correct spatiotemporal initiation of differentiation and downstream developmental stages is vital for proper wood formation. Members of the NAC (NAM, ATAF1/2 and CUC) family of transcription factors are described as top level regulators of xylem cell fate and secondary cell wall (SCW) deposition, but the signals initiating their transcription have yet to be elucidated.

View Article and Find Full Text PDF

The seedling-lethal Arabidopsis thaliana high chlorophyll fluorescence145 (hcf145) mutation leads to reduced stability of the plastid tricistronic psaA-psaB-rps14 mRNA and photosystem I (PSI) deficiency. Here, we genetically mapped the HCF145 gene, which encodes a plant-specific, chloroplast-localized, modular protein containing two homologous domains related to the polyketide cyclase family comprising 37 annotated Arabidopsis proteins of unknown function. Two further highly conserved and previously uncharacterized tandem repeat motifs at the C terminus, herein designated the transcript binding motif repeat (TMR) domains, confer sequence-specific RNA binding capability to HCF145.

View Article and Find Full Text PDF

Nitrogen is a key mineral nutrient playing a crucial role in plant growth and development. Understanding the mechanisms of nitrate uptake from the soil and distribution through the plant in response to nitrogen starvation is an important step on the way to improve nitrogen uptake and utilization efficiency for better growth and productivity of plants, and to prevent negative effects of nitrogen fertilizers on the environment and human health. In this study, we show that Arabidopsis NITRATE TRANSPORTER 2.

View Article and Find Full Text PDF

Land plant genomes encode four functional ribosomal peptide chain release factors (Prf) of eubacterial origin, two (PrfA and PrfB homologs) for each endosymbiotic organelle. Formerly, we have shown that the Arabidopsis thaliana chloroplast-localized PrfB homolog, PrfB1, is required not only for termination of translation but also for stabilization of UGA stop codon-containing chloroplast transcripts. A previously undiscovered PrfB-like protein, PrfB3, is localized to the chloroplast stroma in a petB RNA-containing complex and found only in vascular plants.

View Article and Find Full Text PDF

We recently characterized a novel heme biogenesis pathway required for heme c(i)' covalent binding to cytochrome b6 in Chlamydomonas named system IV or CCB (cofactor assembly, complex C (b6f), subunit B (PetB)). To find out whether this CCB pathway also operates in higher plants and extend the knowledge of the c-type cytochrome biogenesis, we studied Arabidopsis insertion mutants in the orthologs of the CCB genes. The ccb1, ccb2, and ccb4 mutants show a phenotype characterized by a deficiency in the accumulation of the subunits of the cytochrome b6f complex and lack covalent heme binding to cytochrome b6.

View Article and Find Full Text PDF

Phylloquinone is a compound present in all photosynthetic plants serving as cofactor for Photosystem I-mediated electron transport. Newly identified seedling-lethal Arabidopsis thaliana mutants impaired in the biosynthesis of phylloquinone possess reduced Photosystem I activity. The affected gene, called PHYLLO, consists of a fusion of four previously individual eubacterial genes, menF, menD, menC, and menH, required for the biosynthesis of phylloquinone in photosynthetic cyanobacteria and the respiratory menaquinone in eubacteria.

View Article and Find Full Text PDF

To investigate the nuclear-controlled mechanisms of [4Fe-4S] cluster assembly in chloroplasts, we selected Arabidopsis thaliana mutants with a decreased content of photosystem I (PSI) containing three [4Fe-4S] clusters. One identified gene, ACCUMULATION OF PHOTOSYSTEM ONE1 (APO1), belongs to a previously unknown gene family with four defined groups (APO1 to APO4) only found in nuclear genomes of vascular plants. All homologs contain two related motifs of approximately 100 amino acid residues that could potentially provide ligands for [4Fe-4S] clusters.

View Article and Find Full Text PDF

The high chlorophyll fluorescence (hcf)145 mutant of Arabidopsis thaliana is specifically affected in photosystem (PS)I function as judged from spectroscopic analysis of PSII and PSI activity. The defect is because of a severe deficiency of PSI core subunits, whereas levels of the four outer antenna subunits of PSI were less reduced in hcf145. Pulse labelling of chloroplast proteins indicated that synthesis of the two largest PSI reaction-centre polypeptides, Psa (photosystem I subunit) A and PsaB, is significantly affected by the mutation.

View Article and Find Full Text PDF

The seedling-lethal nuclear Arabidopsis hcf101 (high chlorophyll fluorescence) mutant is impaired in photosynthesis and complemented by the wild-type HCF101 cDNA. Photosystem I (PSI) activity is abolished, and PSI core complexes fail to accumulate in hcf101, whereas levels of other thylakoid membrane proteins are unaffected. Northern and in vivo labelling analyses as well as studies on polysome loading show that PSI transcript levels and translation rates of proteins, which belong to PSI, are normal in hcf101.

View Article and Find Full Text PDF

The nuclear atpC1 gene encoding the gamma subunit of the plastid ATP synthase has been inactivated by T-DNA insertion mutagenesis in Arabidopsis thaliana. In the seedling-lethal dpa1 (deficiency of plastid ATP synthase 1) mutant, the absence of detectable amounts of the gamma subunit destabilizes the entire ATP synthase complex. The expression of a second gene copy, atpC2, is unaltered in dpa1 and is not sufficient to compensate for the lack of atpC1 expression.

View Article and Find Full Text PDF

Positional cloning of the hcf109 (high chlorophyll fluorescence) mutation in Arabidopsis has identified a nucleus-encoded, plastid-localized release factor 2-like protein, AtprfB, indicating that the processes of translational termination in chloroplasts resemble those of eubacteria. Control of atprfB expression by light and tissues is connected to chloroplast development. A point mutation at the last nucleotide of the second intron causes a new splice site farther downstream, resulting in a deletion of seven amino acid residues in the N-terminal region of the Hcf109 protein.

View Article and Find Full Text PDF

1,696 children were vaccinated; of these, 1,487 children had different kinds of somatic pathology, including 1,181 children with CNS lesions, 29 children with malignant tumors, 45 children with congenital defects, 82 children with allergic diseases, etc. The group of relatively healthy vaccinees consisted of 209 children. The following vaccines were used for immunization: Tetracoq 05, D.

View Article and Find Full Text PDF

The effect of a wild measles virus circulating in a childhood collective body on the immune status of 80 children has been studied over time. Only using enzyme immunoassay was it possible to fully record and assess the degree of booster effect of the virus on children in case of infection transmission. In 25% cases the increment of antibodies was at the expense of specific IgM antibodies appearing in the sera of children.

View Article and Find Full Text PDF