Am J Hosp Palliat Care
September 2024
Background: Medical schools often lack training for serious illness conversations with patients and caregivers. We developed a curriculum in our elective Transitioning to Residency medical student course, focused on end-of-life discussions. This paper provides an overview of the curriculum and outcomes from an advanced preparation assignment and student evaluations.
View Article and Find Full Text PDFCooperation and defection are social traits whose evolutionary origin is still unresolved. Recent behavioral experiments with humans suggested that strategy changes are driven mainly by the individuals' expectations and not by imitation. This work theoretically analyzes and numerically explores an aspiration-driven strategy updating in a well-mixed population playing games.
View Article and Find Full Text PDFSynchronization of chaotic systems is usually investigated for structurally equivalent systems typically coupled through linear diffusive functions. Here, we focus on a particular type of coupling borrowed from a nonlinear control theory and based on the optimal placement of a sensor-a device measuring the chosen variable-and an actuator-a device applying the actuating (control) signal to a variable's derivative-in the response system, leading to the so-called flat control law. We aim to investigate the dynamics produced by a response system that is flat coupled to a drive system and to determine the degree of generalized synchronization between them using statistical and topological arguments.
View Article and Find Full Text PDFOrdinal measures provide a valuable collection of tools for analyzing correlated data series. However, using these methods to understand information interchange in the networks of dynamical systems, and uncover the interplay between dynamics and structure during the synchronization process, remains relatively unexplored. Here, we compare the ordinal permutation entropy, a standard complexity measure in the literature, and the permutation entropy of the ordinal transition probability matrix that describes the transitions between the ordinal patterns derived from a time series.
View Article and Find Full Text PDFAlthough the cooperative dynamics emerging from a network of interacting players has been exhaustively investigated, it is not yet fully understood when and how network reciprocity drives cooperation transitions. In this work, we investigate the critical behavior of evolutionary social dilemmas on structured populations by using the framework of master equations and Monte Carlo simulations. The developed theory describes the existence of absorbing, quasiabsorbing, and mixed strategy states and the transition nature, continuous or discontinuous, between the states as the parameters of the system change.
View Article and Find Full Text PDFSynchronization has been the subject of intense research during decades mainly focused on determining the structural and dynamical conditions driving a set of interacting units to a coherent state globally stable. However, little attention has been paid to the description of the dynamical development of each individual networked unit in the process towards the synchronization of the whole ensemble. In this paper we show how in a network of identical dynamical systems, nodes belonging to the same degree class, differentiate in the same manner, visiting a sequence of states of diverse complexity along the route to synchronization independently on the global network structure.
View Article and Find Full Text PDFCultured neuronal networks (CNNs) are a robust model to closely investigate neuronal circuits' formation and monitor their structural properties evolution. Typically, neurons are cultured in plastic plates or, more recently, in microfluidic platforms with potentially a wide variety of neuroscience applications. As a biological protocol, cell culture integration with a microfluidic system provides benefits such as accurate control of cell seeding area, culture medium renewal, or lower exposure to contamination.
View Article and Find Full Text PDFThe path toward the synchronization of an ensemble of dynamical units goes through a series of transitions determined by the dynamics and the structure of the connections network. In some systems on the verge of complete synchronization, intermittent synchronization, a time-dependent state where full synchronization alternates with non-synchronized periods, has been observed. This phenomenon has been recently considered to have functional relevance in neuronal ensembles and other networked biological systems close to criticality.
View Article and Find Full Text PDFWe propose a metric to characterize the complex behavior of a dynamical system and to distinguish between organized and disorganized complexity. The approach combines two quantities that separately assess the degree of unpredictability of the dynamics and the lack of describability of the structure in the Poincaré plane constructed from a given time series. As for the former, we use the permutation entropy S_{p}, while for the latter, we introduce an indicator, the structurality Δ, which accounts for the fraction of visited points in the Poincaré plane.
View Article and Find Full Text PDFWe explore the consequences of introducing higher-order interactions in a geometric complex network of Morris-Lecar neurons. We focus on the regime where traveling synchronization waves are observed from a first-neighbors-based coupling to evaluate the changes induced when higher-order dynamical interactions are included. We observe that the traveling-wave phenomenon gets enhanced by these interactions, allowing the activity to travel further in the system without generating pathological full synchronization states.
View Article and Find Full Text PDFMotivated by the recent multiplex framework of complex networks, in this work, we investigate if explosive synchronization can be induced in the multiplex network of two layers. Using nonidentical Kuramoto oscillators, we show that a sufficient frequency mismatch between two layers of a multiplex network can lead to explosive inter- and intralayer synchronization due to mutual frustration in the completion of the synchronization processes of the layers, generating a hybrid transition without imposing any specific structure-dynamics correlation.
View Article and Find Full Text PDFWe explore the relation between the topological relevance of a node in a complex network and the individual dynamics it exhibits. When the system is weakly coupled, the effect of the coupling strength against the dynamical complexity of the nodes is found to be a function of their topological roles, with nodes of higher degree displaying lower levels of complexity. We provide several examples of theoretical models of chaotic oscillators, pulse-coupled neurons, and experimental networks of nonlinear electronic circuits evidencing such a hierarchical behavior.
View Article and Find Full Text PDFRelay (or remote) synchronization between two not directly connected oscillators in a network is an important feature allowing distant coordination. In this work, we report a systematic study of this phenomenon in multiplex networks, where inter-layer synchronization occurs between distant layers mediated by a relay layer that acts as a transmitter. We show that this transmission can be extended to higher order relay configurations, provided symmetry conditions are preserved.
View Article and Find Full Text PDFAdaptation plays a fundamental role in shaping the structure of a complex network and improving its functional fitting. Even when increasing the level of synchronization in a biological system is considered as the main driving force for adaptation, there is evidence of negative effects induced by excessive synchronization. This indicates that coherence alone cannot be enough to explain all the structural features observed in many real-world networks.
View Article and Find Full Text PDFRecently, the presence of antibodies and dengue virus (DV) RNA in neotropical wild mammals, including Desmodus rotundus, was reported. In a previous study, DV was also found in a high percentage (39.6%) of ectoparasitic hematophagous dipters specifics of these hematophagous bats.
View Article and Find Full Text PDFObjective: Advances in neuroimaging, genomics, and molecular biology have improved the understanding of the pathogenesis of epilepsy. That is why the International League Against Epilepsy (ILAE) has created a new classification system. The present study aims to evaluate the association between epilepsy cases classified by the ILAE 2010 classification proposal, electroencephalography (EEG), and magnetic resonance imaging brain findings (MRI).
View Article and Find Full Text PDFInter-layer synchronization is a dynamical process occurring in multi-layer networks composed of identical nodes. This process emerges when all layers are synchronized, while nodes in each layer do not necessarily evolve in unison. So far, the study of such inter-layer synchronization has been restricted to the case in which all layers have an identical connectivity structure.
View Article and Find Full Text PDFContext: The rapid increase in demand for palliative care (PC) services has led to concerns regarding workforce shortages and threats to the resiliency of PC teams.
Objectives: To describe the development, implementation, and evaluation of a regional interdisciplinary training program in PC.
Methods: Thirty nurse and physician fellows representing 22 health systems across the Chicago region participated in a two-year PC training program.
Inter-layer synchronization is a distinctive process of multiplex networks whereby each node in a given layer evolves synchronously with all its replicas in other layers, irrespective of whether or not it is synchronized with the other units of the same layer. We analytically derive the necessary conditions for the existence and stability of such a state, and verify numerically the analytical predictions in several cases where such a state emerges. We further inspect its robustness against a progressive de-multiplexing of the network, and provide experimental evidence by means of multiplexes of nonlinear electronic circuits affected by intrinsic noise and parameter mismatch.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2015
Synchronization of networked oscillators is known to depend fundamentally on the interplay between the dynamics of the graph's units and the microscopic arrangement of the network's structure. We here propose an effective network whose topological properties reflect the interplay between the topology and dynamics of the original network. On that basis, we are able to introduce the effective centrality, a measure that quantifies the role and importance of each network's node in the synchronization process.
View Article and Find Full Text PDFAm J Hosp Palliat Care
January 2018
Aims: Our primary aims were to assess growth in the local hospital based workforce, changes in the composition of the workforce and use of an interdisciplinary team, and sources of support for palliative medicine teams in hospitals participating in a regional palliative training program in Chicago.
Methods: PC program directors and administrators at 16 sites were sent an electronic survey on institutional and PC program characteristics such as: hospital type, number of beds, PC staffing composition, PC programs offered, start-up years, PC service utilization and sources of financial support for fiscal years 2012 and 2014.
Results: The median number of consultations reported for existing programs in 2012 was 345 (IQR 109 - 2168) compared with 840 (IQR 320 - 4268) in 2014.
Phys Rev E Stat Nonlin Soft Matter Phys
March 2015
We study the organization of finite-size, large ensembles of phase oscillators networking via scale-free topologies in the presence of a positive correlation between the oscillators' natural frequencies and the network's degrees. Under those circumstances, abrupt transitions to synchronization are known to occur in growing scale-free networks, while the transition has a completely different nature for static random configurations preserving the same structure-dynamics correlation. We show that the further presence of degree-degree correlations in the network structure has important consequences on the nature of the phase transition characterizing the passage from the phase-incoherent to the phase-coherent network state.
View Article and Find Full Text PDFLarge scale phase-contrast images taken at high resolution through the life of a cultured neuronal network are analyzed by a graph-based unsupervised segmentation algorithm with a very low computational cost, scaling linearly with the image size. The processing automatically retrieves the whole network structure, an object whose mathematical representation is a matrix in which nodes are identified neurons or neurons' clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites.
View Article and Find Full Text PDFIn vitro primary cultures of dissociated invertebrate neurons from locust ganglia are used to experimentally investigate the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. At all the different stages of the culture's development, identification of neurons' and neurites' location by means of a dedicated software allows to ultimately extract an adjacency matrix from each image of the culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main network's characteristics during the self-organization process of the culture.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2013
The emergence of dynamical abrupt transitions in the macroscopic state of a system is currently a subject of the utmost interest. Given a set of phase oscillators networking with a generic wiring of connections and displaying a generic frequency distribution, we show how combining dynamical local information on frequency mismatches and global information on the graph topology suggests a judicious and yet practical weighting procedure which is able to induce and enhance explosive, irreversible, transitions to synchronization. We report extensive numerical and analytical evidence of the validity and scalability of such a procedure for different initial frequency distributions, for both homogeneous and heterogeneous networks, as well as for both linear and nonlinear weighting functions.
View Article and Find Full Text PDF