Radical coupling of thiols is an attractive route for the synthesis of disulfides, but this approach should be promoted by strong oxidants and/or metal salts in combination with additives, which limits its substrate scope and application. In this work, the -anomeric amide was first found to be able to realize the conversion of thiols to sulfur radicals with high efficiency in the absence of an oxidant or any additives for the synthesis of symmetrical disulfides. The protocol features mild reaction conditions, good functional group tolerance, and moderate to excellent yields.
View Article and Find Full Text PDFA practical method for the deoxygenation of α-hydroxyl carbonyl compounds under mild reaction conditions is reported here. The use of cheap and easy-to-handle NaS·9HO as the reductant in the presence of PPh and -chlorosuccinimide (NCS) enables the selective dehydroxylation of α-hydroxyl carbonyl compounds, including ketones, esters, amides, imides and nitrile groups. The synthetic utility is demonstrated by the late-stage deoxygenation of bioactive molecule and complex natural products.
View Article and Find Full Text PDFA practical and mild method for the switchable synthesis of sulfoxides or sulfones selective oxidation of sulfides using cheap -fluorobenzenesulfonimide (NFSI) as the oxidant has been developed. These highly chemoselective transformations were simply achieved by varying the NFSI loading with HO as the green solvent and oxygen source without any additives. The good functional group tolerance makes the strategy valuable.
View Article and Find Full Text PDFAristolochic acid (AA) is the major active component of medicinal plants from the Aristolochiaceae family of flowering plants widely utilized for medicinal purposes. However, the molecular mechanisms of AA systems effects remain poorly understood. Here, we employed a joint network analysis that combines network pharmacology, a protein-protein interaction (PPI) database, biological processes analysis and functional annotation analysis to explore system effects.
View Article and Find Full Text PDFThe high-pathogenicity island (HPI) is an important determinant of the pathogenicity of pathogenic Yersinia microbes. The HPI carries a cluster of virulence genes that chiefly account for the biosynthesis, transportation and regulation of a virulence-associated siderophore, yersiniabactin. This siderophore is also present in uropathogenic E.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is one of the primary hepatic malignancies and is the third most common cause of cancer related death worldwide. Although a wealth of knowledge has been gained concerning the initiation and progression of HCC over the last half century, efforts to improve our understanding of its pathogenesis at a molecular level are still greatly needed, to enable clinicians to enhance the standards of the current diagnosis and treatment of HCC. In the post-genome era, advanced mass spectrometry driven multi-omics technologies (e.
View Article and Find Full Text PDFIn vivo small molecules as necessary intermediates are involved in numerous critical metabolic pathways and biological processes associated with many essential biological functions and events. There is growing evidence that MS-based metabolomics is emerging as a powerful tool to facilitate the discovery of functional small molecules that can better our understanding of development, infection, nutrition, disease, toxicity, drug therapeutics, gene modifications and host-pathogen interaction from metabolic perspectives. However, further progress must still be made in MS-based metabolomics because of the shortcomings in the current technologies and knowledge.
View Article and Find Full Text PDF