Pavement condition monitoring is an important task in road asset management and efficient abnormal pavement condition detection is critical for timely conservation management decisions. The present work introduces a mobile pavement condition monitoring approach utilizing low-cost sensor technology and machine-learning-based methodologies. Specifically, an on-board unit (OBU) embedded with an inertial measurement unit (IMU) and global positioning system (GPS) is applied to collect vehicle posture data in real time.
View Article and Find Full Text PDFDriving behavior recognition can provide an important reference for the intelligent vehicle industry and probe vehicle-based traffic estimation. The identification of driving behavior using mobile sensing techniques such as smartphone- and vehicle-mounted terminals has gained significant attention in recent years. The present work proposed the monitoring of longitudinal driving behavior using a machine learning approach with the support of an on-board unit (OBU).
View Article and Find Full Text PDF