Experimental studies indicate a bidirectional, functional relationship between glucocorticoids and the endocannabinoid system; however, the effects of repeated glucocorticoid treatment on the endocannabinoid system have not been examined. In this study, we treated male rats with either a single dose or a 21-day course of treatment with corticosterone (20 mg/kg) and measured hippocampal cannabinoid CB(1) receptor expression and endocannabinoid content. The 21-day, but not the single, administration of corticosterone significantly reduced both the binding site density and amount of protein of the hippocampal cannabinoid CB(1) receptor without affecting affinity for the CB(1) receptor agonist, [(3)H]CP55940.
View Article and Find Full Text PDFThe endocannabinoid, N-arachidonylethanolamine (AEA) is accumulated by neurons via a process that has been characterized biochemically but not molecularly. Inhibitors of AEA accumulation have been characterized individually but have not been compared in a single study. Our purpose was to compare the potency of five previously described compounds (AM404, AM1172, VDM11, OMDM-2, and UCM707) both as inhibitors of AEA and N-palmitoylethanolamine (PEA) accumulation by cerebellar granule neurons and as inhibitors of AEA hydrolysis.
View Article and Find Full Text PDFEndocannabinoid signaling has been implicated in habituation to repeated stress. The hypothesis that repeated exposures to stress alters endocannabinoid signaling in the limbic circuit was tested by restraining male mice for 30 min/day for 1, 7, or 10 days and measuring brain endocannabinoid content. Amygdalar N-arachidonylethanolamine was decreased after 1, 7, and 10 restraint episodes; 2-arachidonylglycerol was increased after the 10th restraint.
View Article and Find Full Text PDFBcl-2-interacting mediator of cell death (Bim), a proapoptotic BH3-only protein, plays a critical role in neuronal apoptosis. Cerebellar granule neurons (CGNs) depend on activity for their survival and undergo apoptosis when deprived of depolarizing concentration of KCl. While it has been proposed that the activation of c-Jun NH2-terminal protein kinase (JNK)/c-Jun pathway contributes to the upregulation of bim gene in neurons subjected to survival signaling withdrawal, here we show that neither inhibition of JNK activity nor expression of dominant-negative c-Jun suppresses the expression of bim gene induced by activity deprivation in CGNs.
View Article and Find Full Text PDFIncreasing evidence suggests that c-Jun N-terminal kinase (JNK) is an important kinase mediating neuronal apoptosis in Parkinson's disease (PD) model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In order to study roles of JNK activity in neuronal apoptosis in this model, we blocked JNK activity in vivo using a specific inhibitor of JNK, SP600125. Our data showed that MPTP-induced phospho-c-Jun of substantial nigral neurons, caused apoptosis of dopaminergic neurons, and decreased the dopamine level in striatal area.
View Article and Find Full Text PDF