Publications by authors named "Leyre Brizuela"

Biomechanical stimulation is proposed to occupy a central place in joint homeostasis, but the precise contribution of exercise remains elusive. We aimed to characterize in vivo the impact of mechanical stimulation on the cell-controlled regulation of ossification within the ankles of healthy mice undergoing mild physical activity. DBA/1 male mice were subjected to voluntary running exercise for two weeks, and compared to mice housed in standard conditions ( = 20 per group).

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to create engineered cartilage using pyrocarbon (PyC) biomaterial and differentiated chondrocytes, focusing on a scaffold-free and mechanically stimulated process.
  • By applying uniaxial cyclic compression in a specially designed tribo-bioreactor, the researchers aimed to keep the chondrocytes in a cartilage-like phenotype while enhancing the matrix composition.
  • Findings indicated that the combination of PyC and dynamic stimulation led to denser constructs with improved mechanical properties and no signs of unwanted cell maturation, highlighting the effectiveness of integrating biomaterials with mechanical stimuli in tissue engineering.
View Article and Find Full Text PDF

Objective: This study investigates the effects of a Brazil nut-enriched diet on body composition and bone parameters in CKD animal model.

Methods: Male Wistar rats were assigned to the following groups: Sham (n=8), Nx (n=6), nephrectomized rats, and NxBN (n=6), nephrectomized rats and an enricheddiet with 5% Brazil nut. Body composition parameters were obtained by dual-energy X- ray absorptiometry (DXA).

View Article and Find Full Text PDF

Mineralization-competent cells, including hypertrophic chondrocytes, mature osteoblasts, and osteogenic-differentiated smooth muscle cells secrete media extracellular vesicles (media vesicles) and extracellular vesicles bound to the extracellular matrix (matrix vesicles). Media vesicles are purified directly from the extracellular medium. On the other hand, matrix vesicles are purified after discarding the extracellular medium and subjecting the cells embedded in the extracellular matrix or bone or cartilage tissues to an enzymatic treatment.

View Article and Find Full Text PDF

Prostate cancer (PC) is the second most common cancer in men worldwide. More than 65% of men diagnosed with PC are above 65. Patients with localized PC show high long-term survival, however with the disease progression into a metastatic form, it becomes incurable, even after strong radio- and/or chemotherapy.

View Article and Find Full Text PDF

A new generation of ceramic on ceramic (BIOLOX ®delta) bearings has emerged more than 10 years ago proving a high resistance to wear and good clinical results. However, biological reactions to wear debris, particularly the nanoparticles, need to be evaluated. The first originality of this study is to start from real wear particles obtained by the hip walking simulator (CERsim).

View Article and Find Full Text PDF

Phospholipase D (PLD) is a ubiquitous enzyme that cleaves the distal phosphoester bond of phospholipids generating phosphatidic acid (PA). In plants, PA is involved in numerous cell responses triggered by stress. Similarly, in mammals, PA is also a second messenger involved in tumorigenesis.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the most frequent cancer in men aged 65 and over. PCa mainly metastasizes in the bone, forming osteosclerotic lesions, inducing pain, fractures, and nerve compression. Cancer cell-derived exosomes participate in the metastatic spread, ranging from oncogenic reprogramming to the formation of pre-metastatic niches.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the most frequent cancer among men and the first cause of death over 65. Approximately 90% of patients with advanced disease will develop bone metastasis, which dramatically reduces long-term survival. Therefore, effective therapies need to be developed, especially when disease is still well-localized.

View Article and Find Full Text PDF

Lipid-based carriers such as liposomes represent one of the most advanced classes of drug delivery systems. Their clinical success relies on their composition, similar to that of the cell membrane. Their cellular specificity often relies on a ligand-receptor interaction.

View Article and Find Full Text PDF

Sphingolipids display important functions in various pathologies such as cancer, obesity, diabetes, cardiovascular or neurodegenerative diseases. Sphingosine, sphingosine 1-phosphate (S1P), and ceramide are the central molecules of sphingolipid metabolism. Sphingosine kinases 1 and 2 (SK1 and SK2) catalyze the conversion of the sphingolipid metabolite sphingosine into S1P.

View Article and Find Full Text PDF

Spondyloarthritis (SpA) is a common rheumatic disease characterized by enthesis inflammation (enthesitis) and ectopic ossification (enthesophytes). The current pathogenesis model suggests that inflammation and mechanical stress are both strongly involved in SpA pathophysiology. We have previously observed that the levels of sphingosine 1-phosphate (S1P), a bone anabolic molecule, were particularly high in SpA patients' serum compared to healthy donors.

View Article and Find Full Text PDF

Selective proteinase inhibitors have demonstrated utility in the investigation of cartilage degeneration mechanisms and may have clinical use in the management of osteoarthritis. The cysteine protease cathepsin K (CatK) is an attractive target for arthritis therapy. Here we report the synthesis of two cathepsin K inhibitors (CKIs): racemic azanitrile derivatives CKI-E and CKI-F, which have better inhibition properties on CatK than the commercial inhibitor odanacatib (ODN).

View Article and Find Full Text PDF

Mammalian phospholipase D (PLD) mostly hydrolyzes phosphatidylcholine producing phosphatidic acid. PLD activity was previously detected in different osteoblastic cell models, and was increased by several growth factors involved in bone homeostasis. To confirm possible actions of PLD isoforms during mineralization process, we analyzed their effects in osteoblastic cell models and during bone formation.

View Article and Find Full Text PDF

Vascular calcification (VC) is the pathological accumulation of calcium phosphate crystals in one of the layers of blood vessels, leading to loss of elasticity and causing severe calcification in vessels. Medial calcification is mostly seen in patients with chronic kidney disease (CKD) and diabetes. Identification of key enzymes and their actions during calcification will contribute to understand the onset of pathological calcification.

View Article and Find Full Text PDF

Spondyloarthritis (SpA) is a relatively common chronic inflammatory joint disorder, with a prevalence of about 0.2-0.5% worldwide.

View Article and Find Full Text PDF

The bioactive metabolite sphingosine-1-phosphate (S1P), a product of sphingosine kinases (SphKs), mediates diverse biological processes such as cell differentiation, proliferation, survival and angiogenesis. A fluorinated analogue of S1P receptor agonist has been synthesized by utilizing a ring opening reaction of oxacycles by a lithiated difluoromethylphosphonate anion as the key reaction. In vitro activity of this S1P analogue is also reported.

View Article and Find Full Text PDF

Sphingosine 1-phosphate (S1P) plays important roles in cell proliferation, differentiation or survival mainly through its surface G-protein-coupled receptors S1P1-5. Bone represents the major site of metastasis for prostate cancer (CaP) cells, which rely on bone-derived factors to support their proliferation and resistance to therapeutics. In the present work we have found that conditioned medium (CM) from the MC3T3 osteoblastic cell line or primary murine and human osteoblast-like cells, as well as co-culture with MC3T3 stimulate proliferation of CaP lines in S1P-dependent manner.

View Article and Find Full Text PDF

Hypoxia, defined as a poor oxygenation, has been long recognized as a hallmark of solid tumors and a negative prognostic factor for response to therapeutics and survival of patients. Cancer cells have evolved biochemical mechanisms that allow them to react and adapt to hypoxia. At the cellular level, this adaptation is under the control of two related transcription factors, HIF-1 and HIF-2 (hypoxia-inducible factor), that respond rapidly to decreased oxygen levels to activate the expression of a broad range of genes promoting neoangiogenesis, glycolysis, metastasis, increased tumor growth, and resistance to treatments.

View Article and Find Full Text PDF

This is the first report of sphingosine 1-phosphate lyase (SPL) protein expression and enzymatic activity in human neoplasm. This enzyme drives irreversible degradation of sphingosine 1-phosphate (S1P), a bioactive lipid associated with resistance to therapeutics in various cancers, including prostate adenocarcinoma. In fresh human prostatectomy specimens, a remarkable decrease in SPL enzymatic activity was found in tumor samples, as compared with normal adjacent tissues.

View Article and Find Full Text PDF

Sphingolipids (ceramide, sphingosine, and sphingosine-1-phosphate) are bioactive lipids with important biological functions in proliferation, apoptosis, angiogenesis, and inflammation. Herein, we describe easy and rapid biochemical methods with the use of radiolabeled molecules ((3)H, (32)P) for their mass determination. Quantitation of sphingosine kinase-1 activity, the most studied isoform, is also included.

View Article and Find Full Text PDF

Radiotherapy is widely used as a radical treatment for prostate cancer, but curative treatments are elusive for poorly differentiated tumors where survival is just 15% at 15 years. Dose escalation improves local response rates but is limited by tolerance in normal tissues. A sphingosine analogue, FTY720 (fingolimod), a drug currently in phase III studies for treatment of multiple sclerosis, has been found to be a potent apoptosis inducer in prostate cancer cells.

View Article and Find Full Text PDF

The sphingosine kinase-1/sphingosine 1-phosphate (SphK1/S1P) pathway has been associated with cancer promotion and progression and resistance to treatments in a number of cancers, including prostate adenocarcinoma. Here we provide the first evidence that dietary agents, namely, epigallocatechin gallate (EGCg, IC(50)≈75 μM), resveratrol (IC(50)≈40 μM), or a mixture of polyphenols from green tea [polyphenon E (PPE), IC(50)≈70 μM] or grapevine extract (vineatrol, IC(50)≈30 μM), impede prostate cancer cell growth in vitro and in vivo by inhibiting the SphK1/S1P pathway. We establish that SphK1 is a downstream effector of the ERK/phospholipase D (PLD) pathway, which is inhibited by green tea and wine polyphenols.

View Article and Find Full Text PDF

Sphingolipid metabolites are critical to the regulation of a number of fundamental biological processes including cancer. Whereas ceramide and sphingosine mediate and trigger apoptosis or cell growth arrest, sphingosine 1-phosphate promotes proliferation, cell survival and angiogenesis. The delicate equilibrium between the intracellular levels of each of these sphingolipids is controlled by the enzymes that either produce or degrade these metabolites.

View Article and Find Full Text PDF

Simple bioactive sphingolipids include ceramide, sphingosine and their phosphorylated forms sphingosine 1-phosphate and ceramide 1-phosphate. These molecules are crucial regulators of cell functions. In particular, they play important roles in the regulation of angiogenesis, apoptosis, cell proliferation, differentiation, migration, and inflammation.

View Article and Find Full Text PDF