Glioblastoma (GB), a prevalent and highly malignant primary brain tumour with a very high mortality rate due to its resistance to conventional therapies and invasive nature, resulting in 5-year survival rates of only 4-17%. Despite recent advancements in cancer management, the survival rates for GB patients have not significantly improved over the last 10-20 years. Consequently, there exists a critical unmet need for innovative therapies.
View Article and Find Full Text PDFBackground: Glioblastomas (GBMs) are notorious for their aggressive features, e.g., intrinsic radioresistance, extensive heterogeneity, hypoxia, and highly infiltrative behaviours.
View Article and Find Full Text PDFInt J Mol Sci
January 2023
Cancer stem cells are known to play a key role in tumour development, proliferation, and metastases. Their unique properties confer resistance to therapy, often leading to treatment failure. It is believed that research into the identification, targeting, and eradication of these cells can revolutionise oncological treatment.
View Article and Find Full Text PDFPurpose: To confirm the effectiveness of steel as a material for shielding photoneutrons produced in medical linear accelerators and report values for neutron first and second tenth value layer to be used as radiation protection quantities.
Methods: Monte Carlo code Geant4 was used to simulate transport of photoneutrons through primary barriers containing layers of concrete and steel. The photoneutron spectrum generated in high energy modern accelerator head components was simulated and projected to barriers of different thicknesses of steel including a control case of no barrier.
The continuously evolving field of radiotherapy aims to devise and implement techniques that allow for greater tumour control and better sparing of critical organs. Investigations into the complexity of tumour radiobiology confirmed the high heterogeneity of tumours as being responsible for the often poor treatment outcome. Hypoxic subvolumes, a subpopulation of cancer stem cells, as well as the inherent or acquired radioresistance define tumour aggressiveness and metastatic potential, which remain a therapeutic challenge.
View Article and Find Full Text PDFBackground: Superior treatment responses by patients with human papillomavirus (HPV) positive head and neck squamous cell carcinoma (HNSCC), compared to patients with HNSCC from other causes, drive biomarker research to optimize treatment. Most HNSCC patients receive radiation therapy delivered as a fractionated course. Changing HPV status in HNSCC from a positive prognostic marker to a predictive one requires biomarkers that capture cellular radiation response to cumulative dose.
View Article and Find Full Text PDFHead and neck squamous cell carcinomas (HNSCC) resulting from human papillomavirus (HPV) are increasing in incidence but demonstrate significantly better treatment response than HNSCC from other causes such as tobacco and alcohol. This study sought to identify differences in HNSCC, intrinsic to HPV status, in their response to radiation dose. Previously unexamined changes in radio-responsiveness following fractionated X-ray irradiation were compared between HPV positive and negative statuses of HNSCC.
View Article and Find Full Text PDFA growing proportion of head and neck cancers (HNC) result from HPV infection. Between HNC aetiological groups (HPV positive and HPV negative) clinical evidence demonstrates significantly better treatment response among HPV positive cancers. Cancer stem cells (CSCs) are identified in HNC tumour populations as agents of treatment resistance and a target for tumour control.
View Article and Find Full Text PDFPurpose: Protons and heavy ions are considered to be ideal particles for use in external beam radiotherapy due to the superior properties of the dose distribution. While a photon (x-ray) beam delivers considerable dose to healthy tissues around the tumor, a proton beam that is delivered with sufficient energies has: a low entrance dose (the dose in front of the tumor); a high-dose region within the tumor, known as the Bragg peak; and, no exit dose beyond the tumor. Proton therapy is the next major step in advancing radiotherapy treatment.
View Article and Find Full Text PDFHead and neck squamous cell carcinomas (HNSCC) resulting from oncogenic transformations following human papillomavirus (HPV) infection consistently demonstrate better treatment outcomes than HNSCC from other aetiologies. Squamous cell carcinoma of the oropharynx (OPSCC) shows the highest prevalence of HPV involvement at around 70-80%. While strongly prognostic, HPV status alone is not sufficient to predict therapy response or any potential dose de-escalation.
View Article and Find Full Text PDFPurpose: Improvements in personalized therapy are made possible by the advances in molecular biology that led to developments in molecular imaging, allowing highly specific in vivo imaging of biological processes. Positron emission tomography (PET) is the most specific and sensitive imaging technique for in vivo molecular targets and pathways, offering quantification and evaluation of functional properties of the targeted anatomy.
Materials And Methods: This work is an integrative research review that summarizes and evaluates the accumulated current status of knowledge of recent advances in PET imaging for cancer diagnosis and treatment, concentrating on novel radiotracers and evaluating their advantages and disadvantages in cancer characterization.
Australas Phys Eng Sci Med
March 2018
Boron neutron capture therapy (BNCT) is a biochemically-targeted type of radiotherapy, selectively delivering localized dose to tumour cells diffused in normal tissue, while minimizing normal tissue toxicity. BNCT is based on thermal neutron capture by stable [Formula: see text]B nuclei resulting in emission of short-ranged alpha particles and recoil [Formula: see text]Li nuclei. The purpose of the current work was to develop and validate a Monte Carlo BNCT beam model and to investigate contribution of individual dose components resulting of neutron interactions.
View Article and Find Full Text PDFGlioblastomas (GBM) are notorious for their high fatality rate. Boron Neutron Capture Therapy (BNCT) being a biochemically targeted type of radiotherapy is a potent modality for GBM. In the current work, a BNCT treatment modelling framework for GBM was developed.
View Article and Find Full Text PDFDetermination of optimal clinical target volume (CTV) margins around gross tumour volume (GTV) for modern radiotherapy techniques, requiring more precise target definitions, is controversial and complex. Tumour localisation has been greatly improved using molecular imaging integrated with conventional imaging techniques. However, the exact incidence and extent of microscopic disease, to be encompassed by CTV, cannot be visualised by any techniques developed to date and remain uncertain.
View Article and Find Full Text PDF