The simultaneous and accurate detection of intracellular pH (pH) and extracellular pH (pH) is essential for studying the complex physiological activities of cancer cells and exploring pH-related therapeutic mechanisms. Here, we developed a super-long silver nanowire-based surface-enhanced Raman scattering (SERS) detection strategy for simultaneous sensing of pH and pH. A surface-roughened silver nanowire (AgNW) with a high aspect ratio is prepared at a nanoelectrode tip using a Cu-mediated oxidation process, which is then modified by pH-sensitive 4-mercaptobenzoic acid (4-MBA) to form 4-MBA@AgNW as a pH sensing probe.
View Article and Find Full Text PDFEngineered platelets (PLT) can bring new possibilities for diseases treatment due to the specific response for a variety of physiological disease environments. However, the deep penetration of engineered PLT in diseased tissues such as tumor is still an important challenge that restricts the therapeutic effect. Herein, the engineered PLT micromotor (PLT@PDA-DOX) is constructed by a universal self-polymerization modification method of dopamine, and the chemotherapeutic drug doxorubicin (DOX) is loaded by both π-π stacking interaction with polydopamine (PDA) and cellular endocytosis of PLT.
View Article and Find Full Text PDFThe treatment difficulties of venous thrombosis include short half-life, low utilization, and poor penetration of drugs at thrombus site. Here, we develop one kind of mesoporous/macroporous silica/platinum nanomotors with platelet membrane (PM) modification (MMNM/PM) for sequentially targeting delivery of thrombolytic and anticoagulant drugs for thrombus treatment. Regulated by the special proteins on PM, the nanomotors target the thrombus site and then PM can be ruptured under near-infrared (NIR) irradiation to achieve desirable sequential drug release, including rapid release of thrombolytic urokinase (3 hours) and slow release of anticoagulant heparin (>20 days).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2020
Limited tumor permeability of therapeutic agents is a great challenge faced by current cancer therapy methods. Herein, a kind of near infrared light (NIR)-driven nanomotor with autonomous movement, targeted ability, hierarchical porous structure, multi-drugs for cancer chemo/photothermal therapy is designed, prepared and characterized. Further, we establish a method to study the interaction between nanomotors and cells, along with their tumor permeability mechanism, including 2D cellular models, 3D multicellular tumor spheroids and in vivo models.
View Article and Find Full Text PDF