Publications by authors named "Leyhr J"

Cartilaginous fishes (chondrichthyans: chimaeras and elasmobranchs -sharks, skates and rays) hold a key phylogenetic position to explore the origin and diversifications of jawed vertebrates. Here, we report and integrate reference genomic, transcriptomic and morphological data in the small-spotted catshark Scyliorhinus canicula to shed light on the evolution of sensory organs. We first characterise general aspects of the catshark genome, confirming the high conservation of genome organisation across cartilaginous fishes, and investigate population genomic signatures.

View Article and Find Full Text PDF

The Weberian apparatus is a novel hearing adaptation that facilitates increased hearing sensitivity in otophysan fishes. The apparatus is a complex system composed of modifications to anterior vertebral elements, the inner ear, and the swim bladder. A critical piece of the system that often receives minor attention are the various ligaments that bridge these three regions.

View Article and Find Full Text PDF

Tardigrades are microscopic organisms with exceptional resilience to environmental extremes. Most protocols to visualize the internal anatomy of tardigrades rely on fixation, hampering our understanding of dynamic changes to organelles and other subcellular components. Here, we provide protocols for staining live tardigrade adults and other postembryonic stages, facilitating real-time visualization of structures including lipid droplets, mitochondria, lysosomes, and DNA.

View Article and Find Full Text PDF

Cartilaginous fishes (chimaeras and elasmobranchs -sharks, skates and rays) hold a key phylogenetic position to explore the origin and diversifications of jawed vertebrates. Here, we report and integrate reference genomic, transcriptomic and morphological data in the small-spotted catshark to shed light on the evolution of sensory organs. We first characterise general aspects of the catshark genome, confirming the high conservation of genome organisation across cartilaginous fishes, and investigate population genomic signatures.

View Article and Find Full Text PDF

Detailed histological analyses are desirable for zebrafish mutants that are models for human skeletal diseases, but traditional histological techniques are limited to two-dimensional thin sections with orientations highly dependent on careful sample preparation. On the other hand, techniques that provide three-dimensional (3D) datasets including µCT scanning are typically limited to visualizing the bony skeleton and lack histological resolution. We combined diffusible iodine-based contrast enhancement (DICE) and propagation phase-contrast synchrotron radiation micro-computed tomography (PPC-SRµCT) to image late larval and juvenile zebrafish, obtaining high-quality 3D virtual histology datasets of the mineralized skeleton and surrounding soft tissues.

View Article and Find Full Text PDF

The acquisition of movable jaws was a major event during vertebrate evolution. The role of NK3 homeobox 2 (Nkx3.2) transcription factor in patterning the primary jaw joint of gnathostomes (jawed vertebrates) is well known, however knowledge about its regulatory mechanism is lacking.

View Article and Find Full Text PDF

The transcription factor Nkx3.2 (Bapx1) is an important chondrocyte maturation inhibitor. Previous Nkx3.

View Article and Find Full Text PDF

Background: The development of the vertebrate limb skeleton requires a complex interaction of multiple factors to facilitate the correct shaping and positioning of bones and joints. Growth and differentiation factor 5 (Gdf5) is involved in patterning appendicular skeletal elements including joints. Expression of gdf5 in zebrafish has been detected in fin mesenchyme condensations and segmentation zones as well as the jaw joint, however, little is known about the functional role of Gdf5 outside of Amniota.

View Article and Find Full Text PDF

Background: Sox (Sry-related high-mobility-group box) genes represent important factors in animal development. Relatively little, however, is known about the embryonic expression patterns and thus possible function(s) of Sox genes during ontogenesis in panarthropods (Arthropoda+Tardigrada+Onychophora). To date, studies have been restricted exclusively to higher insects, including the model system Drosophila melanogaster, with no comprehensive data available for any other arthropod group, or any tardigrade or onychophoran.

View Article and Find Full Text PDF